Afficher la notice abrégée

hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorKRAUSE, Kevin
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorGARCIA, Marine
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorMICHAU, Dominique
hal.structure.identifierLaboratoire du Futur [LOF]
dc.contributor.authorCLISSON, Gérald
hal.structure.identifierCanadian Light Source
dc.contributor.authorBILLINGHURST, Brant
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorBATTAGLIA, Jean-Luc
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorCHEVALIER, Stéphane
dc.date.issued2023
dc.identifier.issn1473-0197
dc.description.abstractEnPolymer electrolyte membrane (PEM) electrolyzers are renewable energy storage systems that produce high purity hydrogen fuel from electrochemical water splitting. The PEM in particular is a key component that acts as a solid electrolyte between electrodes and separates the reactants, but despite these benefits, its internal ion transport mechanisms are not fully understood. Here, the first microfluidic PEM electrolyzer that is semi-transparent in the infrared (IR) spectrum is developed as a platform for characterizing the PEM hydration during operation. The electrochemical performance of the chip is compared to its PEM hydration, which is measured via synchrotron Fourier-transform infrared (FTIR) spectroscopy. The PEM water content is directly probed in the operating electrolyzer by measuring the transmitted light intensity at wavelengths around 10 μm. By supplying the electrolyzer with reactant starving flow rates, mass transport driven cell failure is provoked, which coincides with membrane dehydration. Furthermore, higher operating temperatures are observed to improve the stability in membrane hydration through increasing the membrane water uptake. The methods presented here prove the viability of IR techniques for characterizing membrane hydration, and future extension towards imaging and thermography would enable further quantitative studies of internal membrane transport behaviors.
dc.description.sponsorshipIMagerie Multiphysique des Piles A Combustible microfluidiques - ANR-20-CE05-0018
dc.language.isoen
dc.publisherRoyal Society of Chemistry
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/
dc.title.enProbing membrane hydration in microfluidic polymer electrolyte membrane electrolyzers <i>via</i> operando synchrotron Fourier-transform infrared spectroscopy
dc.typeArticle de revue
dc.identifier.doi10.1039/d3lc00380a
dc.subject.halChimie/Matériaux
bordeaux.journalLab on a Chip
bordeaux.page4002 - 4009
bordeaux.volume23
bordeaux.issue18
bordeaux.peerReviewedoui
hal.identifierhal-04207548
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-04207548v1
bordeaux.COinSctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.jtitle=Lab%20on%20a%20Chip&amp;rft.date=2023&amp;rft.volume=23&amp;rft.issue=18&amp;rft.spage=4002%20-%204009&amp;rft.epage=4002%20-%204009&amp;rft.eissn=1473-0197&amp;rft.issn=1473-0197&amp;rft.au=KRAUSE,%20Kevin&amp;GARCIA,%20Marine&amp;MICHAU,%20Dominique&amp;CLISSON,%20G%C3%A9rald&amp;BILLINGHURST,%20Brant&amp;rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée