Show simple item record

hal.structure.identifierInstitut de Radioprotection et de Sûreté Nucléaire [IRSN]
dc.contributor.authorTHIBAUT, Yann
hal.structure.identifierDépartement de Radiothérapie, Unité de Physique Médicale
dc.contributor.authorTANG, Nicolas
hal.structure.identifierCentre d'Etudes Nucléaires de Bordeaux Gradignan [CENBG]
dc.contributor.authorTRAN, Hoang Ngoc
hal.structure.identifierLaboratoire de Radiobiologie des expositions accidentelles [IRSN/PSE-SANTE/SERAMED/LRAcc]
dc.contributor.authorVAURIJOUX, Aurelie
hal.structure.identifierLaboratoire de dosimétrie des rayonnements ionisants [IRSN/PSE-SANTE/SDOS/LDRI]
dc.contributor.authorVILLAGRASA, Carmen
hal.structure.identifierCentre d'Etudes Nucléaires de Bordeaux Gradignan [CENBG]
dc.contributor.authorINCERTI, Sébastien
hal.structure.identifierLaboratoire de dosimétrie des rayonnements ionisants [IRSN/PSE-SANTE/SDOS/LDRI]
dc.contributor.authorPERROT, Yann
dc.date.accessioned2023-11-20T16:51:41Z
dc.date.available2023-11-20T16:51:41Z
dc.date.issued2022
dc.identifier.issn1661-6596
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/185086
dc.description.abstractEnDouble strand breaks (DSB) in nuclear DNA are one type of radiation-induced damage identified as being particularly deleterious. The calculation of these damages using Monte Carlo track structure modelling, which is made possible by the Geant4-DNA toolkit, could be a good indicator to better appreciate and anticipate the side effects of radiation therapy. However, in order to obtain accurate simulated results, a cell nucleus geometry as realistic as possible must be used. In this work, we present simulation results with a new model of an endothelial cell nucleus in which the levels of chromatin compaction are distributed along the genome according to the isochore theory. In a comparative study with a previous nuclear geometry, simulations are conducted for proton LET of 4.29 keV/µm, 19.51 keV/µm and 43.25 keV/µm. The organization of the chromatin fiber into different levels of compaction linked to isochore families leads to an increase of 3-10% in DSB yield and makes it possible to identify the most affected part of the genome. New results indicate that, the genome core is more radiosensitive than the genome desert. This study highlights the importance of an advanced modelling of the distribution of the chromatin compaction levels for the calculation of the radio-induced damage.
dc.language.isoen
dc.publisherMDPI
dc.title.enNanodosimetric calculations of radiation-induced DNA damage in a new nucleus geometrical model based on the isochore theory
dc.typeArticle de revue
dc.identifier.doi10.3390/ijms23073770
dc.subject.halPhysique [physics]
bordeaux.journalInternational Journal of Molecular Sciences
bordeaux.page3370
bordeaux.volume23
bordeaux.hal.laboratoriesCentre d'Études Nucléaires de Bordeaux Gradignan (CENBG)*
bordeaux.issue7
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-03636006
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03636006v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=International%20Journal%20of%20Molecular%20Sciences&rft.date=2022&rft.volume=23&rft.issue=7&rft.spage=3370&rft.epage=3370&rft.eissn=1661-6596&rft.issn=1661-6596&rft.au=THIBAUT,%20Yann&TANG,%20Nicolas&TRAN,%20Hoang%20Ngoc&VAURIJOUX,%20Aurelie&VILLAGRASA,%20Carmen&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record