Show simple item record

hal.structure.identifierCentro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina [UFSC]
dc.contributor.authorDO NASCIMENTO, Rodney Marcelo
hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
dc.contributor.authorGRAUBY-HEYWANG, Christine
hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
dc.contributor.authorKAHLI, Houssem
hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
dc.contributor.authorDEBEZ, Nesrine
hal.structure.identifierBiologie du fruit et pathologie [BFP]
dc.contributor.authorBEVEN, Laure
hal.structure.identifierCentro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina [UFSC]
hal.structure.identifierUniversidade Federal de Santa Catarina = Federal University of Santa Catarina [Florianópolis] [UFSC]
dc.contributor.authorBECHTOLD, Ivan Helmuth
hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
dc.contributor.authorCOHEN-BOUHACINA, Touria
dc.date.issued2024-01
dc.identifier.issn0927-7765
dc.description.abstractEnPredicting the initial steps of bacterial biofilm formation remains a significant challenge accross various fields, such as medical and industrial ones. Here we present a straightforward 3D theoretical model based on thermodynamic rules to assess the early stages of biofilm formation on different material surfaces. This model relying also on morphological aspects of bacteria, we used Atomic Force Microscopy images of two Gram negative bacteria, Pseudomonas fluorescens and Escherichia coli to determine their dimensions and geometries as single cells or in aggregated states. Algorithms developed for our modeling and numerical simulations generated a dataset of energetic minimized states, depending on the substrate. The model was applied to substrates widely used for bacteria immobilization in imaging applications. The results show that the different minimum energy values, depending of the substrate, can be correlated with the bacterial adhesion state, representing a potential tool for evaluating the early stages of biofilm formation on various surfaces.
dc.language.isoen
dc.publisherElsevier
dc.subject.enBacteria adhesion
dc.subject.enEarly stage of biofilm formation
dc.subject.enSurface wettability
dc.subject.enMinimum interfacial energy
dc.subject.en3D physical modeling
dc.title.enA 3D physical model predicting favorable bacteria adhesion
dc.typeArticle de revue
dc.identifier.doi10.1016/j.colsurfb.2023.113628
dc.subject.halPhysique [physics]
bordeaux.journalColloids and Surfaces B: Biointerfaces
bordeaux.page113628
bordeaux.volume233
bordeaux.peerReviewedoui
hal.identifierhal-04289656
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-04289656v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Colloids%20and%20Surfaces%20B:%20Biointerfaces&rft.date=2024-01&rft.volume=233&rft.spage=113628&rft.epage=113628&rft.eissn=0927-7765&rft.issn=0927-7765&rft.au=DO%20NASCIMENTO,%20Rodney%20Marcelo&GRAUBY-HEYWANG,%20Christine&KAHLI,%20Houssem&DEBEZ,%20Nesrine&BEVEN,%20Laure&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record