Mostrar el registro sencillo del ítem

dc.rights.licenseopenen_US
hal.structure.identifierLaboratoire de l'intégration, du matériau au système [IMS]
dc.contributor.authorOMAR, Haytham
dc.contributor.authorKLIBI, Walid
dc.contributor.authorBABAI, M. Zied
hal.structure.identifierLaboratoire de l'intégration, du matériau au système [IMS]
dc.contributor.authorDUCQ, Yves
ORCID: 0000-0001-5144-5876
IDREF: 119003791
dc.date.accessioned2023-10-03T07:35:42Z
dc.date.available2023-10-03T07:35:42Z
dc.date.issued2023-03-01
dc.identifier.issn0925-5273en_US
dc.identifier.urioai:crossref.org:10.1016/j.ijpe.2022.108748
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/183860
dc.description.abstractOmnichannel retailing has changed the purchasing behavior of customers in recent years, especially in online shopping, which has led to higher complexity in supply chain demand forecasting. Nowadays customers buy a variety of products in baskets that do not share similar characteristics and across various channels. In this article, we propose a new approach to forecasting demand, driven by data on customers shopping baskets. Drawing on network graph theory and findings from the marketing literature, we identify for a given product four attributes to promote the connectivity with other products sold together in a basket: degree and strength for cross-categories connection, substitutability and complementarity for within-categories connection. These attributes are used as predictor variables within four proposed methods: an autoregressive integrated moving average model with exogeneous variables (ARIMAX), a linear and a polynomial regression with one lag of sales and a machine learning method. We conduct an empirical investigation using online and physical sales related to an assortment of 24,000 products of a major cosmetics retailer in France. We provide empirical evidence that using the shopping basket data with the proposed forecasting methods improves the forecasting accuracy and the stock control performance in omnichannel retailing. We also show that there is a benefit from joint forecasting of the online and store channels, and a benefit of shared inventory between both channels in terms of shortage reduction.
dc.language.isoENen_US
dc.sourcecrossref
dc.subjectOmnichannel retailing
dc.subjectDemand forecasting
dc.subjectShopping basket
dc.subjectNetwork analysis
dc.subjectInventory
dc.title.enBasket data-driven approach for omnichannel demand forecasting
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.ijpe.2022.108748en_US
dc.subject.halInformatique [cs]/Recherche opérationnelle [cs.RO]en_US
bordeaux.journalInternational Journal of Production Economicsen_US
bordeaux.page108748en_US
bordeaux.volume257en_US
bordeaux.hal.laboratoriesIMS : Laboratoire de l'Intégration du Matériau au Système - UMR 5218en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.teamPRODUCTIQUE-MEIen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exportfalse
workflow.import.sourcedissemin
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=International%20Journal%20of%20Production%20Economics&rft.date=2023-03-01&rft.volume=257&rft.spage=108748&rft.epage=108748&rft.eissn=0925-5273&rft.issn=0925-5273&rft.au=OMAR,%20Haytham&KLIBI,%20Walid&BABAI,%20M.%20Zied&DUCQ,%20Yves&rft.genre=article


Archivos en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem