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Abstract

Omnichannel retailing has changed the purchasing behavior of customers in recent years, especially

in online shopping, which has led to higher complexity in supply chain demand forecasting. Nowadays

customers buy a variety of products in baskets that do not share similar characteristics and across various

channels. In this article, we propose a new approach to forecasting demand, driven by data on customers

shopping baskets. Drawing on network graph theory and market basket analysis, we identify three attributes

for a product to promote the connection with other products sold together in a basket: degree, strength,

and support. These attributes are used as predictor variables with an autoregressive integrated moving

average model. We conduct an empirical investigation using sales and basket data related to an assortment

of 24,000 products of a major cosmetics retailer in France selling through online and physical retail channels.

We provide empirical evidence that using the shopping basket data improves the forecasting accuracy in

omnichannel retailing. We also show that there is a considerable benefit from a joint forecasting of the

online and store channels and a shared inventory between both channels.

Keywords: Omnichannel retailing, demand forecasting, shopping basket, network analysis, inventory

1 Introduction

1.1 General introduction and motivation

With the rise of omnichannel retailing in recent years, the shopping experience has changed drastically. Om-

nichannel retailing uses a variety of channels to interact with customers and fulfill their orders—a seamless

shopping experience, enabling customers to order anytime from anywhere, in person or through digital de-

vices, and to have their purchase be delivered at their preferred time and location (Strang 2013, Bell et al.

2014, Chopra 2018). As discussed by Brynjolfsson and Smith (2000), advanced technologies are blurring the

distinctions between store and online retailing, creating an omnichannel environment. The shift to such an en-

vironment was accelerated by the COVID-19 pandemic (Knowles et al. 2020). From an operations management
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perspective, omnichannel retailing implies the integration of different demand streams, which raises several key

issues, related to pricing optimization, assortment planning, demand forecasting, and inventory management.

These issues are far from being resolved today.

Lapide (2016) and Byrne (2016) highlighted that omnichannel retailing adds complexity and that part of the

change retailers would need to make involves their forecasting and planning processes, which work well for shelf

sales but not necessarily for online order fulfillment. The common practice among multichannel retailers has

been a siloed approach to planning and forecasting the different channels (Byrne 2016). Rooderkerk and Kök

(2019) have argued that inventory replenishment traditionally relies on a separate forecasting demand of chan-

nels, whereas the demand cannot be truly captured because the retailer is unaware of the customer’s journey

that has led to such demand. For example, a customer could see a product in the showroom and order the

product online. This often leads to an increase of the demand uncertainty, which makes the forecasting a more

challenging task. In the same way, Byrne (2016) argued that among the most common trends in omnichannel

distribution is the recognition of the need for a shared view of inventory across all channels.

Furthermore, the shopping basket notion has gained an increasing importance in omnichannel retailing. It has

become a crucial vehicle to capture sales through continuous promotional periods, fast accessibility of a wide

range of products, an abundance of social media advertising, and various bundling offers. For instance, the data

panel of a major cosmetics retailer used in this work reveals that, out of 2.2 million online orders over the year,

50% of them occurred in baskets with two distinct products or more, and there were 2.4 ordered products on

average per basket. Previously, Kumar and Rao (2006) argued that marketing departments should use basket

composition data to target advertisement to consumers and find purchasing patterns in baskets. This raises the

question of how data from multiple product baskets could be considered by operations managers to improve

the accuracy of demand forecasting in omnichannel retailing. Surprisingly, little research has been devoted to

demand forecasting within an omnichannel context, and to the best of our knowledge, no research has incorpo-

rated basket characteristics and behavior in demand forecasting. We endeavor to fill this gap in this article.

To analyze the purchasing patterns in shopping baskets, a mining approach, referred to as market basket anal-

ysis, is used. This approach enables to characterize the associations between products that are frequently sold

together in a basket based on measures, such as the support, the lift, and the confidence (Berry and Linoff 2004,

Ghoshal and Sarkar 2014). For instance, the support measures the percentage of sold baskets that contain a set

of products sold together. Market basket analysis has been used by many retailers, such as Walmart, Amazon,

Flipkart, to boost their marketing capabilities. Furthermore, graph theory is another field that is used to model

the connections between items within a network and analyze the magnitude of their connectivity. It enables

to calculate attributes such as the degree of connectivity, frequency, strength etc. Such approaches should be

considered as a basis for operations managers to forecast demand given the data on shopping baskets, which

constitutes a challenge that we address in this work.
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1.2 Business context

Our research work is part of a project in collaboration with a large retailer in the cosmetics industry that sells

a broad catalog of products through store and online channels. The project aims at the integration of in-store

and online channels from demand forecasting and fulfillment perspectives. Figure 1 illustrates the retailer’s

downstream supply chain schema composed of a set of customers and their locations, a selected store, a retail

warehouse, and a fulfillment center.

Figure 1: Omnichannel fulfillment

The retailer has been operating its in-store sales for a long time, relying on the deployment of a brick-

and-mortar store network, replenished periodically from a central warehouse (denoted BMS). With the advent

of e-commerce, the retailer started offering online sales and moved recently to the implementation of “buy

online pick-up at store” (BOPS) and “ship-from store” (SFS) policies through the online channel to ensure a

competitive response time that is supported via a dedicated fulfillment center. SFS takes advantage of the

existing physical network by turning certain store locations to ship-from points for the online sales. Figure 1

depicts the replenishment-storage-shipment flows at the store under the omnichannel context, with dual product

flow replenishment to the store (bold arrows), ship-to customer flows for SFS (a regular arrow), and customer

moves to the store for BMS and for BOPS options (dotted arrows). Hence, a key question tackled in this work

is, how can omnichannel demand forecasting be used to improve the inventory management and fulfillment

performance in retailing?

1.3 Contributions

Our paper contributes to the operations management literature in three ways:

1. Building on market basket analysis and graph theory, we propose a novel forecasting approach for online and

store sales that is driven by data on customers shopping baskets. To the best of our knowledge, our article is

the first that considers the shopping basket in demand forecasting.

2. Through assessing a dataset of an assortment of 24,029 products in the online and store channels of a major

cosmetics retailer, we empirically show the outperformance of the proposed forecasting approach compared to

other benchmark forecasting methods commonly used in the retail context. We also empirically show the benefit
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of joint forecasting of the online and store sales.

3. We provide empirical evidence that using joint forecasting and shared inventory in an omnichannel context

leads to a reduction of inventory shortages. This is shown by comparing the inventory performance of three

fulfillment scenarios where the sales of both channels are forecasted separately or jointly and the inventory is

either dedicated to each channel or shared by both channels.

The remainder of the article is organized as follows. Section 2 is dedicated to a review of the literature by

presenting the research background on omnichannel retailing and demand forecasting in the retail context. In

Section 3, we present our basket data–driven forecasting approach. We empirically assess the performance of

the different forecasting approaches in Section 4. In Section 5, we analyze the impact of omnichannel forecasting

on the inventory and fulfillment performance. Finally, in Section 6, we present the conclusions of the article in

addition to suggesting some avenues for further research.

2 Literature review

2.1 Omnichannel retailing

Omnichannel retailing is a nascent research area. In a recent review Melacini et al. (2018) underlined that key

topics, such as the evolution of retail distribution networks, assortment planning over multiple channels, and

the logistics role played by stores in the delivery process, are still under-represented in omnichannel retailing.

Jasin et al. (2019) reported that the term omnichannel was introduced by Strang (2013) as a boundaryless retail

experience to customers where a customer can research a product online or through a catalog, mobile applica-

tions, showrooms, or physical stores and then decide to buy though one of these channels. This is congruent

with most of the definitions referring to omnichannel retailing as the use of a variety of channels to interact

with customers and fulfill their orders (Bell et al. 2014, Chopra 2018). Chopra (2018) presented a framework of

relative costs of the four omnichannel alternatives introduced in Bell et al. (2014). He highlighted, for instance,

the contrast between the high inventory costs incurred by traditional retail and the high transportation costs

for retailers using an online channel. Gallino and Moreno (2014) are among the first to cover the integration of

online and offline channels in retail. They discussed important effects of the implementation of a BOPS channel,

especially the cross-selling effect and the channel-shift effect. From a consumer point of view, Ailawadi and

Farris (2017) underlined that there are clear benefits to an omnichannel distributional structure and discussed

the heterogeneity in consumer reasons for buying online and the unknown path to purchasing across channels,

which clearly is challenging from a forecasting perspective. This is congruent with recent discussions in Bell

et al. (2018) and Bijmolt et al. (2019), who introduced the notion of the omnichannel customer journey around

showrooming and web-rooming processes, and underlined the interplay between marketing and operations. The

study of Ishfaq et al. (2016), relying on interviews with supply chain executives, underlined how omnichannel re-

tailing could create separate demand streams and complicate the inventory positioning and allocation decisions
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for retailers. Goic and Olivares (2019) reported that in a data-driven omnichannel framework, the boundaries

between online and offline data are disappearing and the methodologies to analyze these data are converging.

Since about 2015, the number of studies on omnichannel retailing has risen significantly. First, a number of

studies in the literature rely on empirical studies to explore this novel topic. Hübner et al. (2016) provided

an exploratory study with 33 retailers that highlighted the advantages and challenges of centralized versus de-

centralized and of integrated versus dedicated distribution schema. The authors reported that optimizing the

cross-channel processes in distribution centers and stores, and inventory integration and allocation, are among

the most important areas for fulfilling distribution requirements. However, as underlined by the authors, only

a few studies and quantitative models have modeled delivery schema when online and offline channels are inte-

grated. Furthermore, the qualitative review proposed by Ishfaq et al. (2016) underlined the role of store-based

retailing on the omnichannel fulfillment strategy, which would be helped by forward placement of inventory. In

the same way, a study of German retailers conducted by Mena et al. (2016) to investigate specifically the transi-

tion to omnichannel logistics provides a framework on the level of integration at the warehouse with regards to

the inventory, picking, and assortment processes. Gallino et al. (2016) empirically studied how the deployment

of ship-to-store policy at a major US retailer generated sales dispersion and affected inventory-ordering models

with an increase of cycle and safety inventories. In a similar way, Gallino and Moreno (2014) studied the impor-

tance of sharing reliable available inventory information with customers when channels are integrated. All these

empirical investigations highlight the need to integrate store and online channel operations and to investigate

cost-service trade-offs when channels are planned and operated jointly.

Furthermore, some quantitative models were proposed in the omnichannel distribution. More specifically, con-

tributions on network design (Arslan et al. 2020, Guerrero-Lorente et al. 2020), dynamic pricing (Harsha et al.

2019), and inventory and fulfillment (Gao and Su 2016) were recently proposed. Recent work on designing om-

nichannel distribution networks underlined the challenge to minimize replenishment, delivery, and fulfillment

costs when channels are integrated, and the benefit of using SFS channel (Arslan et al. 2020). Using a newsven-

dor setting with inventory decisions, Gao and Su (2016) studied store inventory optimization when a BOPS

channel is available, and they concluded that BOPS tends to increase traffic in the store by providing inventory

information and increased convenience to customers.The work of Harsha et al. (2019) developed a dynamic

price optimization problem in the presence of cross-channel interactions and proposed two pricing policies that

partitioned the inventory between channels. Gallino et al. (2019) and Jasin et al. (2019) discussed how relying

on a warehouse to fulfill customer online orders can reduce operational costs and argued that adapting an SFS

model can increase the service level perceived by customers.

Recently, Rooderkerk and Kök (2019) introduced the challenge of assortment planning, which is a strategic

problem faced by retailers when opening a new channel or coordinating between channels in an omnichannel

context. These authors discuss the notions of asymmetric integration in which part of the offering is common,

and the other part is specific to each channel, and finally there is symmetric integration, where what is sold in
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the stores is exactly what is sold online. The authors, rightfully, appealed to revoking the classical predictive

and prescriptive modeling approaches in an omnichannel context that all work by a separate demand stream

and by location (stores or fulfillment centers). The authors reported that academic research has been largely

silent on the challenges of forecasting the demand streams of the various types of omnichannel flows. To the best

of our knowledge, there is no research work in the literature that considers forecasting and inventory planning

to operate an omnichannel distribution network under online and store demand.

2.2 Demand forecasting in the retail context

A plethora of forecasting methods have been studied since the 1980s (Syntetos et al. 2016, Petropoulos et al.

2020). Such methods include simple extrapolative methods, such as exponential smoothing and moving averages

(Gardner Jr 1985, Svetunkov and Petropoulos 2018), autoregressive integrated moving average (ARIMA)-type

models (Gilbert 2005, Babai et al. 2013), machine learning methods (Zhang and Qi 2005, Punia et al. 2020),

and judgmental methods (Petropoulos et al. 2016, 2018). A considerable amount of research work has been

dedicated to analyzing and comparing the performance of such methods through empirical investigations and

international forecasting competitions using supply chain data (Petropoulos and Makridakis 2020). The last

forecasting competition (referred to as the M5 competition) was built on the case of a Walmart retail supply

chain with more than 30,000 products (Makridakis et al. 2020). It showed the outperformance of machine

learning methods compared to standard statistical forecasting methods. The M5 competition has also shown

the ability to improve the accuracy of demand forecasting by considering exogenous/explanatory variables. The

inclusion of exogeneous variables in the forecasting approach will be part of this research.

In the omnichannel retail context, Armstrong (2016) argued that forecasting strongly depends on the retailer’s

omnichannel strategy, noting that both forecasts of the online orders and sales at stores are important for ful-

fillment decisions. This issue can be addressed through hierarchical forecasting. Fildes et al. (2019) presented

an overview on the practice and research of retail forecasting. They reported that, at the product level, the

time horizon of forecasting changes across the supply chain from quarterly to monthly to daily depending on

the location (e.g., monthly forecasting at the distribution center level and quarterly forecasting at the factory

level). They highlighted the complexity of product forecasting due to different physical attributes such as color,

size, and packaging. They also highlighted the importance of product mix across product categories and they

recommended that category management starts with forecasting the category level with a judgmental approach,

taking into account inter-category purchasing behavior or the product mix. Ma and Fildes (2021) presented a

meta-learning framework based on deep convolutional neural networks to forecast retail sales. Based on weekly

data of a grocery and drug chain related to a sample of 50 stores and 30 product categories, they showed the

superior forecasting performance of the proposed meta-learner. They recommended, for forecasting retail sales,

building a pool of base forecasters using both individual and pooled forecasting methods, to target finding the

best combination of forecasts instead of the best individual method. Shang et al. (2020) showed that online
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retailers, especially in fashion, face a much bigger forecasting issue compared to physical retailers, which relates

to product returns.

Furthermore, Fildes et al. (2019) argued that retail sales at the product and daily levels are characterized by a

high degree of intermittence, that is, frequent zero sales. This demand characteristic attracted a considerable

amount of research, and several forecasting methods were proposed to deal with demand intermittence. Syn-

tetos and Boylan (2005) developed a commonly used framework to categorize intermittent demand into four

categories—namely, smooth, lumpy, erratic, and intermittent. For a recent overview on the research dealing

with intermittent demand, readers are referred to Nikolopoulos (2020). Croston (1972) established a benchmark

method in theory and practice for intermittent demand forecasting. It is the only method that is available in

major ERP-type solutions such as SAP and specialized forecasting software packages. The M5 competition

is the first forecasting competition that has included the Croston method to deal with intermittent demand.

However, it is worth noting that for a high degree of intermittence and lumpiness, the Croston method often

leads to poor forecasting accuracy, and simple methods, such as single exponential smoothing (SES), may lead

to a much better performance (Syntetos et al. 2015). The Croston method is included in this research work as

a benchmark for the performance of the proposed approach.

Another important body of literature in retail forecasting deals with demand aggregation. In fact, demand in

a retail supply chain can be aggregated at several levels, such as the product level (e.g., stock keeping unit,

family, etc.), geographic location (e.g., store, region, etc.), or time (e.g., day, week, month, quarter, etc.). These

different aggregation strategies can be either hierarchical and/or temporal and necessitate different forecasting

methods (Rostami-Tabar et al. 2013). For a review on the advances related to supply chain forecasting by

aggregation, interested readers are referred to Syntetos et al. (2016). It is worth pointing out that despite the

richness of the forecasting literature in the retail context and the integration of different exogenous variables,

the attributes of basket shopping practices have never been considered in terms of demand forecasting. This gap

in the literature motivates our research to consider market basket analysis and linkages between sold products

when forecasting sales in the omnichannel retailing context.

3 Basket data-driven forecasting approach

Based on the data of the shopping baskets, the proposed forecasting approach starts by developing the network

of the sold products to identify their attributes, which are then used within an ARIMAX regression model (Box

et al. 1994). This two-step forecasting approach is detailed in the following subsections.

3.1 Network development and attributes extraction

Graph theory is widely applied to conceptualize and analyze complex networks in supply chains (Gross and

Yellen 2005, Kim et al. 2015, Dooley et al. 2019). In our context, we use graph theory to capture the products’
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relationships based on their sales in shopping baskets. More specifically, we consider a weighted graph to model

the relationship between sold products. The nodes correspond to the products in the considered assortment, and

when there is a pair of products sold together within at least one basket (we refer to this as a connection between

the two products), the edge linking the two products is associated with the number of baskets in which the two

products are sold together. This number is referred to as the frequency of this connection. We note that in our

graph representation we assume that the relational attributes of products are the only associations and there is

no causal relationship; thus, the network is undirected. With this in mind, we identify the three attributes of the

product considered in the proposed forecasting approach: (1) Degree of the product, the number of connections

(or arrows) with the other products of the assortment; (2) Strength of the product, the total frequency with all

connected products; and (3) Support of the product, the strength of the product divided by the total number of

sold baskets. In order to illustrate the graph and the characterization of the attributes, we consider an example

of four products (A, B, C, D). In this example, we consider a total of 20 sold baskets. The product A is sold nine

times. It is sold in two baskets with product B, in two baskets with product C, and in five baskets with product

D. Figure 2a presents the graph of this example and Figure 2b shows the calculation of the three attributes for

the four products. For example, the degree of product A is 3 because this product is sold with three products,

whereas the strength is 9, which is the sum of the frequency of the arrows. The support is 9/20, which is the

strength of product A divided by the total number of baskets.

(a) Graph associated with the example
(b) Attributes calculation

Figure 2: Illustrative example for the calculation of the attributes

From graph-theoretic perspective, we can conceptualize the network of connections between products in

baskets as follows. Let t 2 T be the set of historical sales periods (days) and b 2 B be the set of sold baskets,

where Bt is the subset of baskets sold in period t 2 T . Let p 2 P be the set of products, where Pb is the subset

of products included in sold basket b. We define G as a undirected graph, denoted by G = (N,E), composed

by N nodes, representing the number of products (N = P ) and E edges representing pairs of products, where

E : (p, p0), 8p, p0 2 P . Accordingly, the graph Gt is defined for a given period t, and is composed by a set of

subgraphs Gt
b per basket b 2 Bt.

The network is produced on a daily basis with a rolling time, and the attributes are determined for each

product and for each forecasting period t. Let h(t) be the historic horizon used to build the network related to

the estimation of period t, composed by [t� 1, ..., t� h], for the collection of baskets Bh(t). Consequently, Gh(t)

defines the network graph associated to the set of periods in h(t) such that Gh(t) = [[t�1,...,t�h]G
t. For a given
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period t, based on the historic horizon h(t) data, the three attributes are computed as follows.

We introduce �t
b(p,p0) as a counter that takes 1 if edge (p, p0) 2 Gt

b (i.e., when both products are in the same

basket), and 0 otherwise. It is then used to compute �t
(p,p0) =

P
t2h(t)

P
b2Bh(t) �t

b(p,p0), 8p, p0 2 P , which

assesses the number of occurrences of a given edge (p, p0) (i.e. a pair of products), in the set of baskets, over the

historic horizon h(t). The Strength attribute in period t is based on the number of incident edges for product p

in basket b, which is computed as Strengthpt =
P

p02P �t
(p,p0). The Support attribute in period t of product p is

given by Supportpt = Strengthpt/|Bh(t)|, where |Bh(t)| is the cardinality of Bh(t). The Degree attribute in period

t of product p, is expressed as Degreept =
P

p02P min(1,�t
(p,p0)). Note that the product quantity information is

captured by the historical sales of the product and it is not represented in the graph.

3.2 Forecasting approach

The proposed forecasting approach can be summarized into two steps and is illustrated in Figure 3 :

• Step 1. Shopping baskets data during the historic horizon h(t) are used to build the network, which is

then considered to calculate the three attributes: Strength, Support, and Degree.

• Step 2. The three attributes are used as regressors along with historical sales data within an ARIMAX

model.

Figure 3: Illustration of the forecasting approach

Hence, at any time period t and for each product p, the forecast, denoted by ypt, is calculated as:

ypt = aStrengthpt + bSupportpt + cDegreept + npt (1)
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where Strengthpt, Supportpt, Degreept are the strength, support, and degree regressors, respectively (calcu-

lated for a network historic horizon h(t)), and a, b, c are their respective coefficients. We also assume that npt

is given by an ARIMA model.

4 Empirical investigation

4.1 Supply chain and data description

We empirically analyze the performance of the proposed forecasting approach by considering real data of a

major French cosmetics retailer. We use an assortment of 24,029 products that are divided into six product

families: perfume, care, makeup, bath, hair, and accessories. The retailer is globally deployed in more than

25 countries and is specifically well established in France with hundreds of stores in many cities and an online

sales platform. As illustrated in Figure 1, the retailer operated a retail warehouse and an online fulfillment

platform, both located in France. The retailer data used for the purpose of this research relates to sales in

2018. The data contain the product reference, the description of the product, the sold quantity, the selling date,

the delivery date, and the invoice (order) number. Based on this information, two datasets are built. A first

dataset, referred here to as Panel A, contains the online sales in all France for the year 2018 with about 2.2

million orders (single- and multiple-item baskets). Panel A is used to make the network analysis and to show

the accuracy of the proposed forecasting approach. The second dataset, referred to here as Panel B, represents

the orders of the online and store channels in one of the largest region in France in 2018. Panel B is used to

assess the omnichannel forecasting accuracy and inventory fulfillment performance.

4.2 Network and basket analysis

We start by presenting the empirical results of the network analysis and the exploratory analysis of the sold

products and baskets.

4.2.1 Characteristics of the network

We empirically analyze the obtained networks through some characteristics, namely, the density, the assorta-

tivity, and the average path length. The density of the network is the ratio between the number of connections

in the network and all the possible connections. This characteristic enables us to show if the products in the

network have a high connectivity (i.e., degree). The empirical results show that the density of the network is

equal to 0.3%, which proves that the network is characterized by a low density. However, from our analysis,

we find that a few products have a very high degree of connectivity, whereas most of the products have a

low degree. This shows that the network is heavily skewed in terms of degree distribution to some products

with high connectivity. The assortativity of the network enables testing whether the baskets are composed of

products from the same product family. A network is highly assortative if its correlation coefficient is close
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to 1, non-assortative if it is 0, and disassortative if it has a coefficient less than 0 (Newman 2002, Noldus and

Van Mieghem 2015). The empirical results show that the overall network assortativity is 0.23, which means

that 77 % of the retail baskets are cross-family orders. Finally, we investigate if the omnichannel retail net-

work follows a small-world network. To do so, we calculate the average path length of the network. Note that

small-world networks are often characterized by a short average path length. The empirical results show a high

average path length of 2.85 compared with the case of randomized networks in which the average path length

is 2.8 (for the latter, we used 50 randomly generated networks with the same number of nodes and density).

This empirical result shows that this retail network is not considered a small-world network.

4.2.2 Exploratory analysis of products and sold baskets

We start by analyzing the sales patterns and the degree of intermittence. To do so, we analyze the data by using

the demand classification proposed by Syntetos and Boylan (2005), referred to hereafter as SBC. Recall that in

the SBC scheme, the demand is classified based on the average demand interval (ADI) and squared coefficient of

variation of demand sizes (CVZ²) with the cut-off values of ADI = 1.32 and CVZ² = 0.49. Four categories are

identified: smooth (ADI < 1.32 and CVZ² < 0.49), lumpy (ADI > 1.32 and CVZ² > 0.49), erratic (ADI <1.32

and CVZ ² > 0.49), and intermittent (ADI > 1.32 and CVZ ² < 0.49). We report in Figure 4 the percentage

of products within each category.

Figure 4: Percentage of products in each category in the online channel

The results in Figure 4 show that the majority of products (66.6%) are characterized by an intermittent

demand pattern. This confirms that the online sales considered in our case are in line with the case presented by

Fildes et al. (2019) in the physical retail space, where 52.2% of the sold products had an intermittent demand

pattern. Figure 4 shows as well that products with lumpy and erratic demand patterns represent more than

30%, whereas those with a smooth demand constitute only 3.3% of the assortment. A focus on the average

demand intervals of the products in each category shows that a product with an intermittent demand is sold

on average once every 14 days, whereas a product with a smooth demand is sold on average every 1.1 days.
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Figure 5: Percentage of singe-product baskets and multiple-product Baskets

We now analyze the composition of orders made for the considered assortment of products. We present in

Figure 5 the percentage of orders with the number of products in these orders. The results in Figure 5 show

that 48.5% of the total baskets have only one product, whereas 51.5% of the baskets have two products or more.

More precisely, the average number of products in a basket is 2.4; a third quartile equals 3, and a maximum

equals 90. This concurs with our initial inference that there could be singularity of buying for certain products,

and effectively these products will have low degree, strength of frequency flow, and strength of support, whereas

many products will have higher degree, which means higher connectivity to other products as well as a higher

strength of frequency flow.

We now check whether a product is usually sold in a single-product basket or in a multiple-product basket.

Our initial intuition is that the new forecasting approach would work well for a product that is sold at least

once with another product in the training horizon. Obviously, a product that is sold all the time as a single

product in a basket would be equally well forecasted using the proposed ARIMAX or a basic ARIMA approach.

To conduct this analysis, we report in Figure 6 the percentage of products and the percentage of times (across

all orders) each product is sold in multiple-product baskets.
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Figure 6: The number of times (percentage wise) each product was sold with other products

The results in Figure 6 show that only 2.7% of the products are sold individually, whereas 59.4% of the

products are sold more than 75% of the time with other products. This confirms that the majority of products

are sold with other products in a basket more than once, which also shows the importance of degree and strength

attributes when forecasting demand of these products. Finally, we report in Figure 7 the degree distribution

of the four categories of products. The results show that the majority of products in the intermittent category

have a daily degree between 0 and 2. This asserts that the products characterized by intermittent demand

have low connectivity compared with products in the erratic, lumpy, and smooth categories. Moreover, because

strength is concerned with the frequency of common ordering of connected products, we report the correlation

between the degree and strength of products in the four categories.

The results in Figure 8 show that the correlation between degree and strength is 0.97, indicating that the

frequency of ordering intermittent demand products with other products is low compared to lumpy, erratic, and

smooth demands.

4.2.3 Attributes modeling, testing, and validation

We tested the significance of the three attributes to predict sales using the generalized linear Lasso regression

model (Tibshirani 1996). To do so, we tested the significance of the different combinations of the attributes (i.e.,

one, two, or three attributes) to find the best combination. The test is conducted by using 10 random samples

of Panel A. Recall that the Lasso regression model penalizes unimportant regressors by shrinking some of the

coefficients of the regression variables to zero if they are insignificant. We report in Table 1 the results of the

two best linear regression models; the first model shows the degree and strength attributes and the second one

shows the three attributes: degree, strength, and support. Table 1 reports the coefficients of the two models,

the root mean squared error (RMSE), the Akaike information criterion (AIC), and the Bayesian information

criterion (BIC). The results of the tests show that both models are significant. Note that all the coefficients of

13



Omnichannel Demand Forecasting

Figure 7: Degree distribution of products per category of products

Figure 8: Pearson correlation test between degree and strength

Model Adj. R2 Intercept Degree Strength Support RMSE AIC BIC
Degree & Strength 0.235 0.071 0.030 0.019 6.674 100029610 100029668
Three attributes 0.235 0.077 0.034 0.017 148.2 6.670 100021142 100021214

Table 1: Two best linear regression models using the attributes
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the two regression models have a p-value less than 0.05. However, Table 1 shows that using the three attributes

of degree, strength, and support, provides the best fit. Hence, these three attributes are considered to be

regressors in the proposed ARIMAX regression model. Because the proposed forecasting approach requires a

network horizon to determine the exogenous variables, we tested several network horizons, that is, a network

horizon with 7 days, 21 days, 28 days, and 56 days. The preliminary results show that the 7 days horizon overall

provides the best performance, and will be further used in the paper.

4.3 Forecasting accuracy analysis

The forecasting accuracy of the proposed approach is first evaluated using the Panel A data. We use three

forecasting methods as a benchmark to show the performance of the proposed forecasting methods, namely, the

ARIMA model, SES, and the Croston method. As argued in the literature review, these methods are commonly

used in the retail context when dealing with products with intermittent demand patterns. The performance

of the four methods is evaluated using one-step-ahead forecasts. We consider a within sample from January

1 to October 19, 2018, and we use the out-of sample from October 20 to December 31, 2018, to evaluate the

performance of the forecasting methods. The smoothing coefficients of SES and Croston are selected such

that they optimize the mean squared error (MSE) over the within sample. We evaluate the accuracy of the

forecasting methods by means of four measures that are commonly in the intermittent demand context: the

mean absolute error (MAE), the root mean square error (RMSE), the mean absolute scaled error (MASE), and

the symmetric mean absolute percentage error (sMAPE). The MAE measure is used to show the magnitude of

the error without having the issue of a bias sign. RMSE is an indication of the standard deviation of forecast

errors. Because MAE and RMSE do suffer from a scale dependence issue, we use MASE and sMAPE as scale-

free measures of the forecasting accuracy. Both measures represent a scaled version of the absolute errors. In

the former, the scaling of the errors is based on the in-sample MAE of the naïve forecasting method (Hyndman

and Koehler 2006, Steinker et al. 2017, Babai et al. 2020). In the latter, the scaling of the error in each period

in the out-of sample is based on an average between the actual demand and its forecast.

4.3.1 Forecasting accuracy results of the online channel

Table 2 shows the empirical results using the data of Panel A. For each forecasting method and accuracy

measure, we report two figures: the upper one represents the average error (across all products) and the one

below represents the percentage of products where the forecasting method is the best for the accuracy measure.

The lower forecasting errors are highlighted by a bold font.

The results in Table 2 show that the proposed ARIMAX forecasting method overall leads to the highest

accuracy when compared to the three forecasting benchmarks. The results also show that the ARIMAX method

is the best-performing method for the highest number of products within the assortment. The second-best-

performing method is the ARIMA method, whereas the method that is associated with the lowest forecasting
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ARIMAX ARIMA SES Croston

MAE Average error 0.474 0.484 0.587 1.351
% of products 54.66% 37.26% 3.56% 4.53%

RMSE Average error 0.875 0.885 1.010 1.762
% of products 46.43% 30.59% 8.84% 14.14%

MASE Average error 3.304 3.320 2.502 4.437
% of products 54.62% 37.29% 3.56% 4.53%

sMAPE Average error 178.028 178.204 178.664 179.357
% of products 31.84% 12.22% 17.10% 38.84%

Table 2: Forecasting accuracy results

Intermittent Erratic
ARIMAX ARIMA SES Croston ARIMAX ARIMA SES Croston

MAE 0.194 0.206 0.236 0.297 MAE 2.467 2.502 2.941 8.171
RMSE 0.342 0.340 0.358 0.413 RMSE 4.783 4.923 5.500 10.812
MASE 1.135 1.187 1.218 1.822 MASE 27.027 27.673 17.656 32.693
sMAPE 189.986 189.038 189.563 189.892 sMAPE 115.645 123.746 122.716 128.725

Lumpy Smooth
ARIMAX ARIMA SES Croston ARIMAX ARIMA SES Croston

MAE 0.733 0.734 0.917 2.169 MAE 1.088 1.075 1.138 5.013
RMSE 1.404 1.420 1.645 2.852 RMSE 1.481 1.456 1.558 5.388
MASE 4.021 4.037 2.453 3.928 MASE 1.224 1.236 1.418 11.427
sMAPE 162.838 167.287 165.836 166.451 sMAPE 137.151 144.420 142.361 146.587

Table 3: Forecasting accuracy results per category of products

accuracy is Croston method. Note that the outperformance of ARIMAX compared to ARIMA is relatively

small (ranging from 0.1% under sMAPE and 2% under MAE), whereas it can be much higher, going up to

65%, when compared to the Croston method. Note that under the MASE measure, SES shows a lower average

error but there is a low number of where SES is the best (3.56%). This means that this outperformance is due

to some products, whereas the MASE values are much higher than those of ARIMAX. To better understand

the performance of ARIMAX and the relatively lower accuracy of SES and Croston, despite their forecast

performance evidence in the context of intermittent demand, we analyze the forecasting accuracy results per

category according the SBC classification scheme. The results for the four categories are reported in Table 3

and the lower forecast errors are highlighted by a bold font.

The results per category show that the proposed ARIMAX method is overall still associated with a high fore-

casting accuracy compared with the other benchmarks for the lumpy, erratic, and smooth categories. However,

the relative error reduction by using ARIMAX is much higher under the smooth, erratic, and lumpy categories,

going up to 6% when compared to ARIMA and 78% when compared to Croston. The outperformance of

the proposed approach under these three categories can be explained by the fact that under non-intermittent

demands, demand occurrences are higher and the approach better captures the connection between the sold

products, which improves its forecasting accuracy. This in line with the findings of Section 4.2, where we have

shown that the connectivity of products is higher under the smooth, erratic, and lumpy categories. Moreover,

as expected, the results reveal that for the intermittent demand category, the relative performance of SES and

Croston improves. These two benchmarks, especially the Croston method, have been developed for the specific

case of intermittent demand with stationary demand intervals and demand sizes, which means that when the
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Figure 9: Baskets characteristics for the omnichannel case

degree of lumpiness or erraticness increases, the method loses its performance. We also note that SES may lead

in some cases of non-smooth demands to a good forecasting accuracy. This is expected because SES is known to

deal better with the non-stationarity of the data in the intermittent demand context as shown in the literature

by Babai et al. (2014).

4.3.2 Omnichannel forecasting results

For the purpose of omnichannel forecasting, we consider the data of Panel B, which relate to the online and store

channels. We first analyze the characteristics of the baskets in the omnichannel case. The results are shown in

Figure 9. In the left we report the percentage of singe-product baskets and multiple-product Baskets and in the

right we report the number of times (percentage wise) each product was sold with other products. The results

in Figure 9 show that 62% of the total baskets have two products or more. This exceeds the percentage in the

online case (reported in Figure 5), which further endorses the importance of the shopping basket behavior in the

omnichannel case. Moreover the results in Figure 9 show that 86.6% of the products are sold more than 75%

of the time with other products. This percentage is higher than the online channel case (reported in Figure 6).

This further confirms that the majority of products are sold with other products in a basket more than once,

which is more pronounced in the omnichannel case.

Next, a joint sales forecast is made after aggregating the daily online and store sales. We analyze the

forecasting accuracy of the four forecasting methods using the online sales channel, the sales of the store channel,

and the omnichannel aggregated sales. We report in Table 4 the average sMAPE results for the three cases.

Results are shown using only sMAPE because this is a relative error measure that enables a fair comparison

among the three cases. The results in Table 4 show that by using the omnichannel case, the sMAPE error

decreases, which means that the forecasting accuracy improves by forecasting the sales based on an aggregation

of the two channels. It is important to note that the improvement of the performance with the joint forecasting
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of both sales channels is realized under the four forecasting methods. Table 4 also shows that although our

proposed forecasting method is not the most accurate for the store sales channel, it remains the best in the

omnichannel sales case.

Forecast accuracy (sMAPE)

ARIMAX ARIMA SES Croston

Online sales 197.883 198.106 198.641 198.704

Store sales 190.244 189.753 190.655 189.870

Omnichannel sales 188.611 189.479 188.968 188.921

Table 4: Omnichannel forecasting accuracy results

4.4 Omnichannel inventory and fulfillment performance

An important question is whether the proposed forecasting approach can be used to improve the inventory

and fulfillment performance in the omnichannel network. To answer this question, we analyze the fulfillment

performance at the store with a separate versus a joint forecasting method and a dedicated versus a shared

inventory. We do so by contrasting the performances of the three alternative scenarios on Panel B data. Recall

that, as illustrated in Figure 1, the business context considers that the store has a dual source replenishment

(a central warehouse and a fulfillment center) and that inventories kept at store are for online and store sales.

Hence, the three scenarios are as follows:

• Scenario 1: Dedicated inventory and separate forecasting scenario (referred to as the DISF scenario). In

this baseline scenario, the store inventory is split by sales channel and the forecast is separated by channel.

• Scenario 2: Shared inventory and separate forecast scenario (referred to as the SISF scenario). In this

scenario, the two sales channels share the same inventory at store. However, the replenishment system

depends separately on the forecast of demand of the store channel and the online channel.

• Scenario 3: Shared inventory and joint forecasting scenario (referred to as the SIJF scenario). In this

scenario, the store and online channels share the same inventory at the store. However, the forecast is

made jointly using the aggregated data from both channels.

To evaluate the inventory performance for the three scenarios, we first conduct a goodness-of-fit analysis to

test the fit of different distributions with the demand in the different channels. We consider five distributions:

normal, Poisson, gamma, negative binomial distribution (NBD), and stuttering Poisson (StPoisson). These

distributions are commonly considered in modeling intermittent and non-intermittent demand data (Syntetos

et al. 2013, Turrini and Meissner 2019). We show in Table 5 the results obtained with a Kolmogorov-Smirnov

test at a 5% significance level.
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Poisson NBD Normal Gamma StPoisson

Online sales
Fit 99.23% 100.00% 94.04% 99.65% 99.98%

No fit 0.77% 0.00% 5.96% 0.35% 0.02%

Store sales
Fit 98.54% 99.80% 93.49% 97.77% 99.78%

No fit 1.30% 0.04% 6.35% 2.07% 0.07%

Omnichannel sales
Fit 97.83% 99.87% 90.97% 96.84% 99.81%

No fit 2.17% 0.13% 9.03% 3.16% 0.19%

Table 5: Empirical goodness-of-fit results

The results show the strong empirical fit of the NBD followed by the StPoisson distribution, with normal

being the distribution associated with the lowest fit. These results are expected knowing that the demand data

are characterized by a high degree of intermittence. Note though that the fit of normal increases when the joint

sales are considered. Therefore, for the purpose of the inventory performance investigation, NBD is selected to

model the lead-time demand.

We then assess the inventory performance of the three scenarios by measuring their resulting stock on hand and

the inventory backordering. To do so, we consider a periodic order-up-to-level inventory control policy, where the

order-up-to level is calculated to satisfy a target cycle service level (CSL, the fraction of replenishment periods

in which all of the demand can be met from stock). Recall that under this policy, each day, the inventory

position is reviewed and an order is triggered if it is found to be below the order-up-to level to raise it up to the

order-up-to level. The order arrives after a lead time, and any demand that is not satisfied from stock on hand

is backordered. The lead time is fixed to 2 days. For the purpose of the analysis, we fix three target CSLs—90%,

95%, and 99%—and for target CSL and each scenario, we measure the average inventory holding volumes and

the average backordering volumes (averages calculated over the evaluation period and across all products). Note

that the last 73 days (from October 20, 2018, to December 31, 2018) are used to evaluate the performance.

In order to have a fair comparison of the three scenarios, we plot efficiency curves of inventory holding versus

backordering volumes. The efficiency curves are reported in Figure 10. In these efficiency curves the method

that has its curve closer to the x-axis for a certain inventory holding volume implies a lower backordering volume

and thus a higher efficiency. We do not report the achieved CSLs because for the DISF scenario the CSL cannot

be reported and compared to that of the two other scenarios.
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Figure 10: Efficiency curves: holding Versus backordering volumes of the fulfillment scenarios

The results in Figure 10 show that the shared inventory and joint forecast scenario leads to the lowest

inventory backordering for fixed inventory holding volumes, which indicates that this scenario is associated with

the highest inventory efficiency. Hence, this empirical investigation of the inventory performance reveals the

benefit of using the joint demand to make forecasts and to use a shared inventory for both the online and retail

channels.

5 Conclusion and Future Work

There is an agreement in the omnichannel retail literature that forecasting omnichannel sales is a challenging

task, and research devoted to deal with this issue is lacking. This study has proposed a new approach to

forecasting demand in an omnichannel retail context using data on customers shopping baskets. The forecasting

approach builds on market basket analysis and graph theory to identify attributes of the products, which can be

used with a time-series forecasting model. We have conducted an empirical analysis of the proposed forecasting

approach and other benchmark forecasting methods commonly used in the retail context. A dataset of an

assortment of more than 24,000 products in the online and store channels from a global leading cosmetics

retailer was used for this purpose. Our study is the first to make an empirical analysis of both online and store

sales and the first to use information on shopping baskets to forecast demand.

We have characterized the empirical behavior of more than 2 million online orders. Our investigation has shown

that more than 95% of the sold products are characterized by an intermittent demand pattern, with 30% of

them having a high lumpiness. By analyzing the composition of orders, we find that more than 50% of products

are sold in baskets with more than two products per basket. Our findings reveal as well that the network of

omnichannel retail sales is characterized by low density and a high average path length, and thus cannot be

considered to be a small-world network. However, the connectivity (i.e., degree) distribution is heavily skewed

to a few products in the network. Through a regression analysis, our study also reveals the importance of
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considering the degree, strength, and support of the network as good regressors for forecasting purposes.

The empirical assessment of the performance of the forecasting methods shows that one of the most popular

methods for intermittent demand forecasting (the Croston method) leads to a poor forecasting accuracy in

the omnichannel context. This underperformance is accentuated in the product category with lumpy demand

patterns. Our proposed forecasting approach, which uses the degree, strength, and support attributes within

an ARIMAX model, tackles this issue by improving the forecasting accuracy for both intermittent and lumpy

demand patterns. These empirical findings highlight the value of considering attributes of the linkages between

sold products in baskets for omnichannel forecasting purposes. The empirical study also shows that a joint

forecasting based on the sales of both online and store sales leads to a higher forecasting accuracy and inventory

performance. Such an omnichannel forecasting approach is recommended to consolidate inventories at stores,

likely leading to a considerable reduction of inventory shortages. These findings enable an omnichannel network

designer to gain valuable insights on how to deploy inventories in a set of fulfillment centers and on how stores

could play a major role in an efficient urban fulfillment. The findings also provide interesting insights on

omnichannel assortment planning based on the data-driven network analysis of the baskets.

An interesting avenue for further research would be to deepen the analysis using market basket analysis and

graph theory to identify other attributes than those that can be considered for forecasting purposes in the

omnichannel context. Such attributes can also be considered within machine learning approaches, which have

been recommended in the literature for their superior performance when using data of exogenous variables.

An extension of this work would be to investigate alternative inventory rationing and fulfillment scenarios that

integrate joint forecasting. Finally, another avenue for future research could be to study the impact of product

assortments at stores on the customer channel choice using the linkages between sold product baskets.
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