Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorFONOONI, Benjamin
hal.structure.identifierESTIA INSTITUTE OF TECHNOLOGY
dc.contributor.authorJEVTIC, Aleksandar
dc.contributor.authorHELLSTRÖM, Thomas
dc.contributor.authorJANLERT, Lars-Erik
dc.date.accessioned2023-06-12T12:00:42Z
dc.date.available2023-06-12T12:00:42Z
dc.date.created2015-03
dc.date.issued2015-03
dc.identifier.issn0921-8890en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/182648
dc.description.abstractEnIn domains where robots carry out human’s tasks, the ability to learn new behaviors easily and quickly plays an important role. Two major challenges with Learning from Demonstration (LfD) are to identify what information in a demonstrated behavior requires attention by the robot, and to generalize the learned behavior such that the robot is able to perform the same behavior in novel situations.The main goal of this paper is to incorporate Ant Colony Optimization (ACO) algorithms into LfD in an approach that focuses on understanding tutor’s intentions and learning conditions to exhibit a behavior. The proposed method combines ACO algorithms with semantic networks and spreading activation mechanism to reason and generalize the knowledge obtained through demonstrations. The approach also provides structures for behavior reproduction under new circumstances. Finally, applicability of the system in an object shape classification scenario is evaluated.
dc.language.isoENen_US
dc.subject.enSemantic networks
dc.subject.enLearning from Demonstration
dc.subject.enHigh-level behavior learning
dc.subject.enAnt Colony Optimization
dc.title.enApplying Ant Colony Optimization algorithms for high-level behavior learning and reproduction from demonstrations
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.robot.2014.12.001en_US
dc.subject.halInformatique [cs]/Robotique [cs.RO]en_US
dc.subject.halInformatique [cs]/Intelligence artificielle [cs.AI]en_US
dc.description.sponsorshipEuropeINTeractive RObotics Research Networken_US
bordeaux.journalRobotics and Autonomous Systemsen_US
bordeaux.page24-39en_US
bordeaux.volume65en_US
bordeaux.hal.laboratoriesESTIA - Rechercheen_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionBordeaux Sciences Agroen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcehal
hal.identifierhal-01133939
hal.version1
hal.exportfalse
workflow.import.sourcehal
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Robotics%20and%20Autonomous%20Systems&rft.date=2015-03&rft.volume=65&rft.spage=24-39&rft.epage=24-39&rft.eissn=0921-8890&rft.issn=0921-8890&rft.au=FONOONI,%20Benjamin&JEVTIC,%20Aleksandar&HELLSTR%C3%96M,%20Thomas&JANLERT,%20Lars-Erik&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée