Show simple item record

hal.structure.identifierInstitut de Physique et Chimie des Matériaux de Strasbourg [IPCMS]
dc.contributor.authorHU, Yaowei
hal.structure.identifierInstitut de Physique et Chimie des Matériaux de Strasbourg [IPCMS]
dc.contributor.authorPICHER, Matthieu
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorPALLUEL, Marlène
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorDARO, Nathalie
hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
dc.contributor.authorFREYSZ, Eric
hal.structure.identifierAlexandru Ioan Cuza University of Iași = Universitatea Alexandru Ioan Cuza din Iași [UAIC]
dc.contributor.authorSTOLERIU, Laurentiu
hal.structure.identifierAlexandru Ioan Cuza University of Iași = Universitatea Alexandru Ioan Cuza din Iași [UAIC]
dc.contributor.authorENACHESCU, Cristian
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorCHASTANET, Guillaume
hal.structure.identifierInstitut de Physique et Chimie des Matériaux de Strasbourg [IPCMS]
dc.contributor.authorBANHART, Florian
dc.date2023
dc.date.issued2023
dc.identifier.issn1613-6810
dc.description.abstractEnAn unusual expansion dynamics of individual spin crossover nanoparticles is studied by ultrafast transmission electron microscopy. After exposure to nanosecond laser pulses, the particles exhibit considerable length oscillations during and after their expansion. The vibration period of 50-100 nanoseconds is of the same order of magnitude as the time that the particles need for a transition from the low-spin to the high-spin state. The observations are explained in Monte Carlo calculations using a model where elastic and thermal coupling between the molecules within a crystalline spin crossover particle govern the phase transition between the two spin states. The experimentally observed length oscillations are in agreement with the calculations, and it is shown that the system undergoes repeated transitions between the two spin states until relaxation in the high-spin state occurs due to energy dissipation. Spin crossover particles are therefore a unique system where a resonant transition between two phases occurs in a phase transformation of first order.
dc.language.isoen
dc.publisherWiley-VCH Verlag
dc.subject.enNano-material
dc.subject.enPhase tranistion
dc.subject.enSpin state transition
dc.subject.enNonlinear-optics
dc.subject.entime resolved electronic microscopy
dc.title.enLaser‐Driven Transient Phase Oscillations in Individual Spin Crossover Particles
dc.typeArticle de revue
dc.identifier.doi10.1002/smll.202303701
dc.subject.halSciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectronique
dc.subject.halPhysique [physics]/Matière Condensée [cond-mat]
bordeaux.journalSmall
bordeaux.peerReviewedoui
hal.identifierhal-04109386
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-04109386v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Small&rft.date=2023&rft.eissn=1613-6810&rft.issn=1613-6810&rft.au=HU,%20Yaowei&PICHER,%20Matthieu&PALLUEL,%20Marl%C3%A8ne&DARO,%20Nathalie&FREYSZ,%20Eric&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record