Afficher la notice abrégée

hal.structure.identifierLaboratoire Charles Fabry / Naphel
dc.contributor.authorJOUANIN, Anthony
hal.structure.identifierLaboratoire Charles Fabry / Naphel
dc.contributor.authorHUGONIN, Jean-Paul
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorLALANNE, Philippe
dc.date.accessioned2023-05-12T10:54:52Z
dc.date.available2023-05-12T10:54:52Z
dc.date.issued2016
dc.identifier.issn1616-301X
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/181925
dc.description.abstractEnBasic design rules are disclosed for broadband light-extraction colloidal films formed with disordered ensembles of plasmonic particles. They are derived through the numerical study of a test-bed geometry consisting of a low-refractive index slab in air. Albeit simple, the geometry encompasses many physically effects encountered in real light-emitting devices, including the pronounced absorption at the peak of the nanoparticles resonance spectrum, the anisotropy of the radiation diagram of nanoparticles in waveguides and unavoidable coherent multiple interferences that ruin the predictive strength of first-order scattering models. How we can simultaneously take advantage of (1) the shape or size of the individual nanoparticles, (2) their transverse position with respect to the guiding photonic structure, (3) their concentration, and (4) the structural topology of the disorder ensemble are illustrated. Following this approach, a threefold enhancement in the extraction efficiency can be reached as compared to a film without plasmonic particles. It is also predicted that the extraction rapidly saturates and then decreases as the nanoparticle density increases, suggesting that best performance is achieved at low concentrations. Spectrally broad and directionally random far-field radiation diagrams are additionally reported, which do not suffer from deterministic interferential behaviors observed at particular wavelengths and directionalities with periodic light-extraction structures.
dc.language.isoen
dc.publisherWiley
dc.title.enDesigner colloidal layers of disordered plasmonic nanoparticles for light extraction
dc.typeArticle de revue
dc.identifier.doi10.1021/ph500467s
dc.subject.halPhysique [physics]/Physique [physics]/Optique [physics.optics]
bordeaux.journalAdvanced Functional Materials
bordeaux.page6215–6223
bordeaux.volume26
bordeaux.hal.laboratoriesLaboratoire Photonique, Numérique et Nanosciences (LP2N) - UMR 5298*
bordeaux.issue34
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01382748
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01382748v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Advanced%20Functional%20Materials&rft.date=2016&rft.volume=26&rft.issue=34&rft.spage=6215%E2%80%936223&rft.epage=6215%E2%80%936223&rft.eissn=1616-301X&rft.issn=1616-301X&rft.au=JOUANIN,%20Anthony&HUGONIN,%20Jean-Paul&LALANNE,%20Philippe&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée