Show simple item record

hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorDANNÉ, Noémie
hal.structure.identifierChemistry and Biochemistry Department (University of Maryland)
dc.contributor.authorKIM, Mijin
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorGODIN, Antoine
hal.structure.identifierChemistry and Biochemistry Department (University of Maryland)
dc.contributor.authorKWON, Hyejin
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorGAO, Zhenghong
hal.structure.identifierChemistry and Biochemistry Department (University of Maryland)
dc.contributor.authorWU, Xiaojian
hal.structure.identifierLos Alamos National Laboratory [LANL]
dc.contributor.authorHARTMANN, Nicolai
hal.structure.identifierLos Alamos National Laboratory [LANL]
dc.contributor.authorDOORN, Stephen
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorLOUNIS, Brahim
hal.structure.identifierChemistry and Biochemistry Department (University of Maryland)
dc.contributor.authorWANG, Yuhuang
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorCOGNET, Laurent
dc.date.accessioned2023-05-12T10:50:54Z
dc.date.available2023-05-12T10:50:54Z
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/181822
dc.description.abstractEnThe intrinsic near-infrared photoluminescence observed in long single walled carbon nanotubes is systematically quenched in ultrashort single-walled carbon nanotubes (usCNTs, below 100 nm length) due to their short dimension as compared to the exciton diffusion length. It would however be key for number of applications to have such tiny nanostructure displaying photoluminescence emission to complement their unique physical, chemical and biological properties. Here we demonstrate that intense photoluminescence can be created in usCNTs (~40 nm length) upon incorporation of emissive sp3-defect sites in order to trap excitons. Using super-resolution imaging at <25 nm resolution, we directly reveal the localization of excitons at the defect sites on individual usCNTs. They are found preferentially localized at nanotube ends which can be separated by less than 40 nm and behave as independent emitters. The demonstration and control of bright near-infrared photoluminescence in usCNTs through exciton trapping opens the possibility to engineering tiny carbon nanotubes for applications in various domains of research including quantum optics and bioimaging.
dc.language.isoen
dc.title.enGeneration of photoluminescent ultrashort carbon nanotubes through nanoscale exciton localization at sp3 -defect sites
dc.typeDocument de travail - Pré-publication
dc.subject.halPhysique [physics]/Matière Condensée [cond-mat]/Autre [cond-mat.other]
dc.subject.halPhysique [physics]/Physique [physics]/Optique [physics.optics]
dc.identifier.arxiv1803.03535
bordeaux.hal.laboratoriesLaboratoire Photonique, Numérique et Nanosciences (LP2N) - UMR 5298*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionCNRS
hal.identifierhal-01727325
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01727325v1
bordeaux.COinSctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.au=DANN%C3%89,%20No%C3%A9mie&amp;KIM,%20Mijin&amp;GODIN,%20Antoine&amp;KWON,%20Hyejin&amp;GAO,%20Zhenghong&amp;rft.genre=preprint


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record