Show simple item record

dc.contributor.advisorLaurent Cognet
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorDANNÉ, Noémie
dc.contributor.otherFrançoise Argoul [Président]
dc.contributor.otherAlexandra Fragola [Rapporteur]
dc.contributor.otherStéphane Berciaud [Rapporteur]
dc.contributor.otherFrançois Treussart
dc.contributor.otherLaurent Groc
dc.date.accessioned2023-05-12T10:48:31Z
dc.date.available2023-05-12T10:48:31Z
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/181767
dc.identifier.nnt2018BORD0199
dc.description.abstractLe cerveau est composé de neurones et de cellules gliales qui jouent un rôle de soutien et de protection du réseau cellulaire. L’espace extra-cellulaire (ECS) correspond à l’espace qui existe entre ces cellules. Les modifications de sa structure peuvent dépendre de plusieurs paramètres comme l’âge, l’apprentissage ou les maladies neuro-dégénératives. Le volume de l’ECS correspond à environ 20% du volume total du cerveau et les neurotransmetteurs et autres molécules circulent dans cet espace pour assurer une communication neuronale optimale. Cependant, les dimensions et la viscosité locale de cet espace restent encore mal-connues. L’ECS est composé entre autres de protéoglycans, de glycoaminoglycans (acide hyaluronique…) et de fluide cérébrospinal. Nous avons proposé dans cette thèse une stratégie pour mesurer les dimensions et les propriétés rhéologiques de l’espace extra-cellulaire de tranches de cerveaux de rats maintenue en vie à l’aide du suivi de nanotubes de carbone individuels luminescents. Pour ces applications, nous avons étudier la biocompatibilité et le rapport signal sur bruit de nos échantillons de nanotubes afin de les détecter en profondeur dans les tranches de cerveaux et de pouvoir mesurer leurs propriétés de diffusion.
dc.description.abstractEnThe brain is mainly composed of neurons which ensure neuronal communication and glialcells which play a role in supporting and protecting the neural network. The extracellular space corresponds to the space that exists between all these cells and represents around 20 %of the whole brain volume. In this space, neurotransmitters and other molecules circulate into ensure optimal neuronal functioning and communication. Its complex organization whichis important to ensure proper functioning of the brain changes during aging, learning or neurodegenerative diseases. However, its local dimensions and viscosity are still poorly known.To understand these key parameters, in this thesis, we developed a strategy based on the tracking of single luminescent carbon nanotubes. We applied this strategy to measure the structural and viscous properties of the extracellular space of living rodent brains slices at the nanoscale. The organization of the manuscript is as follows. After an introduction of the photoluminescence properties of carbon nanotubes, we present the study that allowed us to select the optimal nanotube encapsulation protocol to achieve our biological applications. We also present a quantitative study describing the temperature increase of the sample when laser irradiations at different wavelengths are used to detect single nanotubes in a brain slice.Thanks to a fine analysis of the singular diffusion properties of carbon nanotubes in complex environments, we then present the strategy set up to reconstruct super-resolved maps (i.e. with resolution below the diffraction limit) of the brain extracellular space morphology.We also show that two local properties of this space can be extracted : a structural complexity parameter (tortuosity) and the fluid’s in situ viscosity seen by the nanotubes. This led us to propose a methodology allowing to model the viscosity in situ that would be seen, not by the nanotubes,but by any molecule of arbitrary sizes to simulate those intrinsically present or administered in the brain for pharmacological treatments. Finally, we present a strategy to make luminescent ultra-short carbon nanotubes that are not intrinsically luminescent and whose use could be a complementary approach to measure the local viscosity of the extracellular space of the brain.
dc.language.isofr
dc.subjectNanotube de carbone
dc.subjectSuivi d'objets individuels
dc.subjectMicroscopie de super-Résolution
dc.subjectNeurosciences
dc.subjectEspace extra-cellulaire du cerveau
dc.subjectDiffusion
dc.subject.enCarbon nanotubes
dc.subject.enSingle particles traking
dc.subject.enSuper-resolution microscopy
dc.subject.enNeurosciences
dc.subject.enBrain extra-cellular space
dc.subject.enDiffusion
dc.titleEtude de la structure nanométrique et de la viscosité locale de l’espace extracellulaire du cerveau par microscopie de fluorescence de nanotubes de carbone uniques
dc.title.enA study of the nanoscale structure and local viscosity of the brain extracellular space by single carbon nanotubes fluorescence microscopy
dc.typeThèses de doctorat
dc.subject.halSciences de l'ingénieur [physics]/Autre
bordeaux.hal.laboratoriesLaboratoire Photonique, Numérique et Nanosciences (LP2N) - UMR 5298*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionCNRS
bordeaux.type.institutionUniversité de Bordeaux
bordeaux.ecole.doctoraleÉcole doctorale des sciences physiques et de l’ingénieur (Talence, Gironde)
hal.identifiertel-01960563
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//tel-01960563v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.title=Etude%20de%20la%20structure%20nanom%C3%A9trique%20et%20de%20la%20viscosit%C3%A9%20locale%20de%20l%E2%80%99espace%20extracellulaire%20du%20cerveau%20par%20microscopie%20de&rft.atitle=Etude%20de%20la%20structure%20nanom%C3%A9trique%20et%20de%20la%20viscosit%C3%A9%20locale%20de%20l%E2%80%99espace%20extracellulaire%20du%20cerveau%20par%20microscopie%20d&rft.au=DANNE%CC%81,%20Noe%CC%81mie&rft.genre=unknown


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record