Show simple item record

hal.structure.identifierDepartment of Physics [Boulder]
dc.contributor.authorMAY, Molly
hal.structure.identifierUniversity of Maryland [Baltimore County] [UMBC]
dc.contributor.authorFIALKOW, David
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorWU, Tong
hal.structure.identifierDepartment of Physics [Boulder]
dc.contributor.authorPARK, Kyoung‐duck
hal.structure.identifierUniversity of Maryland [Baltimore County] [UMBC]
dc.contributor.authorLENG, Haixu
hal.structure.identifierUniversity of Maryland [Baltimore County] [UMBC]
dc.contributor.authorKROPP, Jaron
hal.structure.identifierUniversity of Maryland [Baltimore County] [UMBC]
dc.contributor.authorGOUGOUSI, Theodosia
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorLALANNE, Philippe
hal.structure.identifierUniversity of Maryland [Baltimore County] [UMBC]
dc.contributor.authorPELTON, Matthew
hal.structure.identifierDepartment of Physics [Boulder]
dc.contributor.authorRASCHKE, Markus
dc.date.accessioned2023-05-12T10:40:24Z
dc.date.available2023-05-12T10:40:24Z
dc.date.issued2019-10
dc.identifier.issn2511-9044
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/181602
dc.description.abstractEnQuantum state control of two‐level emitters is fundamental for many information processing, metrology, and sensing applications. However, quantum‐coherent photonic control of solid‐state emitters has traditionally been limited to cryogenic environments, which are not compatible with implementation in scalable, broadly distributed technologies. In contrast, plasmonic nano‐cavities with deep sub‐wavelength mode volumes have recently emerged as a path toward room temperature quantum control. However, optimization, control, and modeling of the cavity mode volume are still in their infancy. Here recent demonstrations of plasmonic tip‐enhanced strong coupling (TESC) with a configurable nano‐tip cavity are extended to perform a systematic experimental investigation of the cavity‐emitter interaction strength and its dependence on tip position, augmented by modeling based on both classical electrodynamics and a quasinormal mode framework. Based on this work, a perspective for nano‐cavity optics is provided as a promising tool for room temperature control of quantum coherent interactions that could spark new innovations in fields from quantum information and quantum sensing to quantum chemistry and molecular opto‐mechanics.
dc.language.isoen
dc.publisherWiley
dc.title.enNano‐Cavity QED with Tunable Nano‐Tip Interaction
dc.typeArticle de revue
dc.identifier.doi10.1002/qute.201900087
dc.subject.halPhysique [physics]/Physique [physics]/Optique [physics.optics]
bordeaux.journalAdvanced Quantum Technologies
bordeaux.page1900087
bordeaux.volume3
bordeaux.hal.laboratoriesLaboratoire Photonique, Numérique et Nanosciences (LP2N) - UMR 5298*
bordeaux.issue2
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-02990738
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02990738v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Advanced%20Quantum%20Technologies&rft.date=2019-10&rft.volume=3&rft.issue=2&rft.spage=1900087&rft.epage=1900087&rft.eissn=2511-9044&rft.issn=2511-9044&rft.au=MAY,%20Molly&FIALKOW,%20David&WU,%20Tong&PARK,%20Kyoung%E2%80%90duck&LENG,%20Haixu&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record