Shape Deformation of Nanoresonator: A Quasinormal-Mode Perturbation Theory
hal.structure.identifier | Westlake University [Zhejiang] | |
hal.structure.identifier | Westlake Institute for Advanced Study [WIAS] | |
dc.contributor.author | YAN, Wei | |
hal.structure.identifier | Laboratoire Photonique, Numérique et Nanosciences [LP2N] | |
dc.contributor.author | LALANNE, Philippe | |
hal.structure.identifier | Westlake University [Zhejiang] | |
hal.structure.identifier | Westlake Institute for Advanced Study [WIAS] | |
dc.contributor.author | QIU, Min | |
dc.date.accessioned | 2023-05-12T10:39:51Z | |
dc.date.available | 2023-05-12T10:39:51Z | |
dc.date.issued | 2020-07 | |
dc.identifier.issn | 0031-9007 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/181594 | |
dc.description.abstractEn | When material parameters are fixed, optical responses of nanoresonators are dictated by their shapes and dimensions. Therefore, both designing nanoresonators and understanding their underlying physics would benefit from a theory that predicts the evolutions of resonance modes of open systems—the so-called quasinormal modes (QNMs)—as the nanoresonator shape changes. QNM perturbation theories (PTs) are one ideal choice. However, existing theories developed for tiny material changes are unable to provide accurate perturbation corrections for shape deformations. By introducing a novel extrapolation technique, we develop a rigorous QNM PT that faithfully represents the electromagnetic fields in perturbed domain. Numerical tests performed on the eigenfrequencies, eigenmodes, and optical responses of deformed nanoresonators evidence the predictive force of the present PT, even for large deformations. This opens new avenues for inverse design, as we exemplify by designing super-cavity modes and exceptional points with remarkable ease and physical insight. | |
dc.language.iso | en | |
dc.publisher | American Physical Society | |
dc.title.en | Shape Deformation of Nanoresonator: A Quasinormal-Mode Perturbation Theory | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1103/PhysRevLett.125.013901 | |
dc.subject.hal | Physique [physics]/Physique [physics]/Optique [physics.optics] | |
bordeaux.journal | Physical Review Letters | |
bordeaux.volume | 125 | |
bordeaux.hal.laboratories | Laboratoire Photonique, Numérique et Nanosciences (LP2N) - UMR 5298 | * |
bordeaux.issue | 1 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-03001919 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-03001919v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Physical%20Review%20Letters&rft.date=2020-07&rft.volume=125&rft.issue=1&rft.eissn=0031-9007&rft.issn=0031-9007&rft.au=YAN,%20Wei&LALANNE,%20Philippe&QIU,%20Min&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |