Show simple item record

hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorPAVIOLO, Chiara
hal.structure.identifierInstitut des Maladies Neurodégénératives [Bordeaux] [IMN]
dc.contributor.authorSORIA, Federico
hal.structure.identifierInterdisciplinary Institute for Neuroscience [Bordeaux] [IINS]
dc.contributor.authorFERREIRA, Joana
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorLEE, Antony
hal.structure.identifierInterdisciplinary Institute for Neuroscience [Bordeaux] [IINS]
dc.contributor.authorGROC, Laurent
hal.structure.identifierInstitut des Maladies Neurodégénératives [Bordeaux] [IMN]
dc.contributor.authorBEZARD, Erwan
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorCOGNET, Laurent
dc.date.accessioned2023-05-12T10:36:06Z
dc.date.available2023-05-12T10:36:06Z
dc.date.issued2020-03
dc.identifier.issn1046-2023
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/181506
dc.description.abstractEnThe brain extracellular space (ECS) is a system of narrow compartments whose intricate nanometric structure has remained elusive until very recently. Understanding such a complex organisation represents a technological challenge that requires a technique able to resolve these nanoscopic spaces and simultaneously characterize their rheological properties. We recently used single-walled carbon nanotubes (SWCNTs) as near-infrared fluorescent probes to map with nanoscale precision the local organization and rheology of the ECS. Here we expand our method by tracking single nanotubes through super-resolution imaging in rat organotypic hippocampal slices and acute brain slices from adult mice, pioneering the exploration of the adult brain ECS at the nanoscale. We found a highly heterogeneous ECS, where local rheological properties can change drastically within few nanometres. Our results suggest differences in local ECS diffusion environments in organotypic slices when compared to adult mouse slices. Data obtained from super-resolved maps of the SWCNT trajectories indicate that ECS widths may vary between brain tissue models, with a looser, less crowded nano-environment in organotypic cultured slices.
dc.language.isoen
dc.publisherElsevier
dc.subject.ensingle-walled carbon nanotubes
dc.subject.ennear-infrared microscopy
dc.subject.enorganotypic brain slices
dc.subject.enacute brain slices
dc.subject.enlive imaging
dc.subject.enlocal diffusivity
dc.subject.ensingle molecule detection
dc.title.enNanoscale exploration of the extracellular space in the live brain by combining single carbon nanotube tracking and super-resolution imaging analysis
dc.typeArticle de revue
dc.identifier.doi10.1016/j.ymeth.2019.03.005
dc.subject.halPhysique [physics]
dc.subject.halSciences du Vivant [q-bio]
bordeaux.journalMethods
bordeaux.hal.laboratoriesLaboratoire Photonique, Numérique et Nanosciences (LP2N) - UMR 5298*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-03293489
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03293489v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Methods&rft.date=2020-03&rft.eissn=1046-2023&rft.issn=1046-2023&rft.au=PAVIOLO,%20Chiara&SORIA,%20Federico&FERREIRA,%20Joana&LEE,%20Antony&GROC,%20Laurent&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record