Afficher la notice abrégée

hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorWU, Tong
hal.structure.identifierEuropean Laboratory for Non-Linear Spectroscopy [LENS]
dc.contributor.authorGURIOLI, Massimo
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorLALANNE, Philippe
dc.date.accessioned2023-05-12T10:35:33Z
dc.date.available2023-05-12T10:35:33Z
dc.date.issued2021
dc.identifier.issn2330-4022
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/181493
dc.description.abstractEnMicrocavities and nanoresonators have the ability to strongly enhance many light−matter-interaction processes used in various applications in nano-optics. This enhancement is due to the resonant excitation of an electromagnetic mode that confines light in space (mode volume) and in time (quality factor). The confinement is not perfect and the modes, even dark ones, always leak some energy and have a finite lifetime. Their non-Hermitian character does significantly more than merely broadening the resonances. In this Perspective, we clarify the main difference between bound modes of Hermitian systems and leaky modes of non-Hermitian resonators, emphasizing the key existence of a spatially dependent phase factor as a signature of nonhermiticity. For decades, the phase factor has often be considered as puzzling or has even be ignored, although it plays a key role in the interpretation of many experiments on nanoscale resonant-mediated light−matter interaction, such as sensing with cavity perturbation, modification of the spontaneous emission rate, optomechanics, strong coupling, and so on. The situation has changed recently, to a point that nowadays a sound non-Hermitian formalism has been developed and freeware packages exist, helping analyze experiments that continuously push back the extraordinary limit offered by large fields for exploring matter with light.
dc.language.isoen
dc.publisherAmerican Chemical Society
dc.subject.enquasinormal mode
dc.subject.enstrong coupling
dc.subject.encavity perturbation theory
dc.subject.enplasmonic nanocavities
dc.subject.enmicrocavities
dc.subject.enLDOS
dc.subject.ennon-Hermitian systems
dc.subject.enquasinormal mode
dc.title.enNanoscale Light Confinement: the Q's and V's
dc.typeArticle de revue
dc.identifier.doi10.1021/acsphotonics.1c00336
dc.subject.halSciences de l'ingénieur [physics]/Optique / photonique
bordeaux.journalACS photonics
bordeaux.page1522-1538
bordeaux.volume8
bordeaux.hal.laboratoriesLaboratoire Photonique, Numérique et Nanosciences (LP2N) - UMR 5298*
bordeaux.issue6
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-03358374
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03358374v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=ACS%20photonics&rft.date=2021&rft.volume=8&rft.issue=6&rft.spage=1522-1538&rft.epage=1522-1538&rft.eissn=2330-4022&rft.issn=2330-4022&rft.au=WU,%20Tong&GURIOLI,%20Massimo&LALANNE,%20Philippe&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée