Show simple item record

hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorGÉRENT, Jean-Baptiste
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorVEYRON, Romain
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorMANCOIS, Vincent
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorBERNON, Simon
dc.date.accessioned2023-05-12T10:29:36Z
dc.date.available2023-05-12T10:29:36Z
dc.date.conference2022-09
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/181371
dc.description.abstractEnThe coherent conversion of microwave to optical signals is for now a missing hardware for long-distance quantum communication between superconducting quantum (sub)processors that could form the nodes of a future quantum network. Various architectures for quantum simulations and information processing are being currently explored with different TRL levels. Among these, circuits of superconducting qubits have already moved from the fundamental research environment to the R&D units of companies. Recent developments have shown extraordinary abilities for performing fast and high-fidelity quantum logic operations. Their limitations are short coherence times precluding long-term storage of quantum information, and the difficulty of coupling distant quantum registers using microwave photons that are (near)resonant with qubit transitions. There is thus a need for (i) a quantum memory compatible with superconducting qubits, and (ii) a microwave to optical transducer to demonstrate the complete communication protocol between distant sub-registers consisting of a moderate number of superconducting qubits. Cold alkaline atoms which have long coherence time and possess transitions both in the MW and optical domain could certainly help improve on these limitations. In this presentation, I will describe how an integrated atom chip compatible with superconducting quantum processors and optical communication networks will be realized within the newly funded MOCA consortium that received the support from the QuantERA ERA-NET Cofund. I will also specifically discuss a newly developed solution to transport atoms in the near field of surfaces were the atom-light coupling strength will be enhanced.
dc.description.sponsorshipAtomes Ultra-Froids piégés dans des Réseaux Optiques Nano-Structurés - ANR-18-CE47-0001
dc.description.sponsorshipConversion micro-onde - optique intégrée sur puce à atomes supraconductrice - ANR-22-QUA2-0003
dc.language.isoen
dc.title.enTowards integrated microwave-to-optical conversion by atoms on a superconducting chip
dc.typeCommunication dans un congrès avec actes
dc.subject.halPhysique [physics]/Physique Quantique [quant-ph]
dc.subject.halPhysique [physics]/Physique [physics]/Physique Atomique [physics.atom-ph]
bordeaux.hal.laboratoriesLaboratoire Photonique, Numérique et Nanosciences (LP2N) - UMR 5298*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionCNRS
bordeaux.countryFR
bordeaux.title.proceedingNano-innovation Rome
bordeaux.conference.cityRome
bordeaux.peerReviewedoui
hal.identifierhal-03943430
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03943430v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=G%C3%89RENT,%20Jean-Baptiste&VEYRON,%20Romain&MANCOIS,%20Vincent&BERNON,%20Simon&rft.genre=proceeding


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record