Show simple item record

hal.structure.identifierlp2n-03,lp2n-11
hal.structure.identifierInstitute for Quantum Electronics
dc.contributor.authorTARRUELL, Leticia
hal.structure.identifierInstitute for Quantum Electronics
dc.contributor.authorGREIF, Daniel
hal.structure.identifierInstitute for Quantum Electronics
dc.contributor.authorUEHLINGER, Thomas
hal.structure.identifierInstitute for Quantum Electronics
dc.contributor.authorJOTZU, Gregor
hal.structure.identifierInstitute for Quantum Electronics
dc.contributor.authorESSLINGER, Tilman
dc.date.accessioned2023-05-12T10:23:14Z
dc.date.available2023-05-12T10:23:14Z
dc.date.issued2012-03-08
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/181177
dc.descriptionSeminar ICTP Trieste 08-03-2012
dc.description.abstractEnDirac points lie at the heart of many fascinating phenomena in condensed matter physics, from massless electrons in graphene to the emergence of conducting edge states in topological insulators. At a Dirac point, two energy bands intersect linearly and the particles behave as relativistic Dirac fermions. In solids, the rigid structure of the material sets the mass and velocity of the particles, as well as their interactions. A different, highly flexible approach is to create model systems using fermionic atoms trapped in an optical lattice, a method which so far has only been applied to explore simple lattice structures. In my talk I will report on the creation of Dirac points with adjustable properties in a tunable honeycomb optical lattice. Using momentum-resolved interband transitions, we observe a minimum band gap inside the Brillouin zone at the position of the Dirac points. We exploit the unique tunability of our lattice potential to adjust the effective mass of the Dirac fermions by breaking the inversion symmetry of the lattice. Moreover, changing the lattice anisotropy allows us to move the position of the Dirac points inside the Brillouin zone. When increasing the anisotropy beyond a critical limit, the two Dirac points merge and annihilate each other. We map out this topological transition in lattice parameter space and find excellent agreement with ab initio calculations. Our results not only pave the way to model materials where the topology of the band structure plays a crucial role, but also provide the possibility to explore many-body phases resulting from the interplay of complex lattice geometries with interactions.
dc.language.isoen
dc.title.enEngineering Dirac points with ultracold fermions in optical lattices
dc.typeAutre document
dc.subject.halPhysique [physics]/Matière Condensée [cond-mat]/Gaz Quantiques [cond-mat.quant-gas]
bordeaux.hal.laboratoriesLaboratoire Photonique, Numérique et Nanosciences (LP2N) - UMR 5298*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionCNRS
hal.identifierhal-00820431
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00820431v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2012-03-08&rft.au=TARRUELL,%20Leticia&GREIF,%20Daniel&UEHLINGER,%20Thomas&JOTZU,%20Gregor&ESSLINGER,%20Tilman&rft.genre=unknown


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record