Afficher la notice abrégée

dc.contributor.authorZHANG, Lin
dc.contributor.authorBHATTACHARYA, Utso
dc.contributor.authorBACHTOLD, Adrian
dc.contributor.authorFORSTNER, Stefan
dc.contributor.authorLEWENSTEIN, Maciej
hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
dc.contributor.authorPISTOLESI, Fabio
dc.contributor.authorGRASS, Tobias
dc.date.accessioned2023-05-11T04:54:06Z
dc.date.available2023-05-11T04:54:06Z
dc.date.issued2023-01-24
dc.identifier.issn2056-6387
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/180931
dc.description.abstractEnQuantum dots placed along a vibrating nanotube provide a quantum simulation platform that can directly address the electron-phonon interaction. This offers promising prospects for the search of new quantum materials and the study of strong correlation effects. As this platform is naturally operated by coupling the dots to an electronic reservoir, state preparation is straightforwardly achieved by driving into the steady state. Here we show that for intermediate electron-phonon coupling strength, the system with spin-polarized quantum dots undergoes a Peierls transition into an insulating regime which exhibits charge-density wave order in the steady state as a consequence of the competition between electronic Coulomb repulsive interactions and phonon-induced attractive interactions. The transport phenomena can be directly observed as fingerprints of electronic correlations. We also present powerful methods to numerically capture the physics of such an open electron-phonon system at large numbers of phonons. Our work paves the way to study and detect correlated electron-phonon physics in the nanotube quantum simulator with current experimentally accessible techniques.
dc.description.sponsorshipNano-optomécanique en cavité dans le régime de couplage ultrafort. - ANR-19-CE47-0012
dc.language.isoen
dc.publisherNature
dc.title.enSteady-state Peierls transition in nanotube quantum simulator
dc.typeArticle de revue
dc.identifier.doi10.1038/s41534-022-00675-4
dc.subject.halPhysique [physics]
dc.identifier.arxiv2206.08020
bordeaux.journalnpj Quantum Information
bordeaux.page7
bordeaux.volume9
bordeaux.hal.laboratoriesLaboratoire Ondes et Matière d'Aquitaine (LOMA) - UMR 5798*
bordeaux.issue1
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-04000942
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-04000942v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=npj%20Quantum%20Information&rft.date=2023-01-24&rft.volume=9&rft.issue=1&rft.spage=7&rft.epage=7&rft.eissn=2056-6387&rft.issn=2056-6387&rft.au=ZHANG,%20Lin&BHATTACHARYA,%20Utso&BACHTOLD,%20Adrian&FORSTNER,%20Stefan&LEWENSTEIN,%20Maciej&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée