Show simple item record

dc.contributor.authorDAVOODIANIDALIK, Mahdi
hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
dc.contributor.authorKELLAY, Hamid
dc.contributor.authorFRANCOIS, Nicolas
dc.date.issued2022-05
dc.description.abstractEnWe present experimental results on a fluctuation-induced force observed in Faraday wave-driven turbulence. As recently reported, a long-range attraction force arises between two walls that confine the wave-driven turbulent flow. In the Faraday waves system, the turbulent fluid motion is coupled with the disordered wave motion. This study describes the emergence of the fluctuation-induced force from the viewpoint of the wave dynamics. The wave amplitude is unaffected by the confinement while the wave erratic motion is. As the wall spacing decreases, the wave motion becomes less energetic and more anisotropic in the cavity formed by the walls, giving rise to a stronger attraction. These results clarify why the modelling of the attraction force in this system cannot be based on the wave amplitude but has to be built upon the wave-fluid motion coupling. When the wall spacing is comparable to the wavelength, an intermittent wave resonance is observed, and it leads to a complex short-range interaction. These results contribute to the study of aggregation processes in the presence of turbulence and its related problems such as the accumulation of plastic debris in coastal marine ecosystems or the modelling of planetary formation.
dc.language.isoen
dc.publisherMDPI
dc.title.enA Hydrodynamic Analog of the Casimir Effect in Wave-Driven Turbulent Flows
dc.typeArticle de revue
dc.typeArticle de synthèse
dc.identifier.doi10.3390/fluids7050155
dc.subject.halPhysique [physics]
bordeaux.journalFluids
bordeaux.page155
bordeaux.volume7
bordeaux.issue5
bordeaux.peerReviewedoui
hal.identifierhal-04013162
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-04013162v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Fluids&rft.date=2022-05&rft.volume=7&rft.issue=5&rft.spage=155&rft.epage=155&rft.au=DAVOODIANIDALIK,%20Mahdi&KELLAY,%20Hamid&FRANCOIS,%20Nicolas&rft.genre=article&unknown


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record