Show simple item record

hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorAYMONIER, Cyril
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorELISSALDE, Catherine
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorPHILIPPOT, Gilles
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorMAGLIONE, Mario
dc.date.issued2014
dc.identifier.issn0921-8831
dc.description.abstractEnFerroelectrics materials have been tremendously attractive since the 40 s with the discovery of ferroelectricity in metal oxide perovskite materials and more precisely in barium titanate. Due to their high potential for industrial applications, intensive research has been carried out to better understand their behavior and develop processes to produce them. Trying to face the down scaling demand of high quality particles towards the nanometer range, some conventional methods such as the solid state one reach their limits. The development of other processes are thus required and the synthesis in supercritical fluids can be considered as a promising alternative. This technology exhibits very interesting characteristics such as fast continuous synthesis (few seconds) of high quality nanoparticles (well crystallized nanoparticles with narrow size distribution) with controlled composition (Ba1−xSrxTiO3 with 0 ⩽ x ⩽ 1) at intermediate synthesis temperatures (<400 °C) with the use of non-toxic solvents (water, ethanol). Reaching the nanometer size range, the intrinsic properties of ferroelectric materials change compared to the bulk. Consequently a deep study concerning the crystalline structure, the presence of defects and the surface chemistry of those nanoparticles has to be achieved to control their properties for further use in functional devices.
dc.language.isoen
dc.publisherElsevier
dc.subject.enSupercritical fluids
dc.subject.enFerroelectric
dc.subject.enNanoparticle
dc.subject.enDefects
dc.subject.enCore–shell
dc.title.enSupercritical fluid technology : a reliable process for high quality BaTiO3 based nanomaterials
dc.typeArticle de revue
dc.identifier.doi10.1016/j.apt.2014.02.016
dc.subject.halChimie/Matériaux
dc.subject.halChimie/Chimie inorganique
bordeaux.journalAdvanced Powder Technology
bordeaux.page1415-1429
bordeaux.volume25
bordeaux.issue5
bordeaux.peerReviewedoui
hal.identifierhal-01082170
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01082170v1
bordeaux.COinSctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.jtitle=Advanced%20Powder%20Technology&amp;rft.date=2014&amp;rft.volume=25&amp;rft.issue=5&amp;rft.spage=1415-1429&amp;rft.epage=1415-1429&amp;rft.eissn=0921-8831&amp;rft.issn=0921-8831&amp;rft.au=AYMONIER,%20Cyril&amp;ELISSALDE,%20Catherine&amp;PHILIPPOT,%20Gilles&amp;MAGLIONE,%20Mario&amp;rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record