Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorESTIVALEZES, Jean-Luc
dc.contributor.authorANISZEWSKI, Wojciech
dc.contributor.authorAUGUSTE, Franck
dc.contributor.authorLING, Yue
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorOSMAR, Ludovic
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorCALTAGIRONE, Jean Paul
dc.contributor.authorCHIRCO, L.
dc.contributor.authorPEDRONO, Annaig
dc.contributor.authorPOPINET, Stéphane
dc.contributor.authorBERLEMONT, Alain
dc.contributor.authorMAGNAUDET, Jacques
dc.contributor.authorMÉNARD, Thibaut
dc.contributor.authorVINCENT, S.
dc.contributor.authorVINCENT, Stéphane
dc.contributor.authorZALESKI, Stéphane
dc.date.accessioned2023-03-01T14:39:31Z
dc.date.available2023-03-01T14:39:31Z
dc.date.issued2022-02-01
dc.identifier.issn0021-9991en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/172128
dc.description.abstractEnA series of benchmarks based on the physical situation of “phase inversion” between two immiscible liquids is presented. These benchmarks aim at progressing towards the direct numerical simulation of two-phase flows. Several CFD codes developed in French laboratories and using either Volume-of-Fluid or Level-Set interface tracking methods are used to provide physical solutions of the benchmarks, convergence studies and code comparisons. Two typical configurations are retained, with integral scale Reynolds numbers of 1.37104 and 4.33105, respectively. The physics of the problem are probed through macroscopic quantities such as potential and kinetic energies, or enstrophy. In addition, scaling laws for the temporal decay of the kinetic energy are derived to check the physical relevance of the simulations. Finally the droplet size distribution is probed. Additional test problems are also reported to estimate the influence of viscous effects in the vicinity of the interface.
dc.description.sponsorshipModélisation et Simulation Multi-échelle des Interfaces - ANR-11-MONU-0011en_US
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subject.enAtomization
dc.subject.enLevel-Set method
dc.subject.enMultiphase flow benchmark
dc.subject.enPhase inversion flow
dc.subject.enVolume of Fluid method
dc.subject.enWater-oil flow
dc.title.enA phase inversion benchmark for multiscale multiphase flows
dc.title.alternativeJournal of Computational Physicsen_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.jcp.2021.110810en_US
dc.subject.halSciences de l'ingénieur [physics]/Matériauxen_US
bordeaux.journalJournal of Computational Physicsen_US
bordeaux.volume450en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.exportfalse
dc.rights.ccCC BYen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Computational%20Physics&rft.date=2022-02-01&rft.volume=450&rft.eissn=0021-9991&rft.issn=0021-9991&rft.au=ESTIVALEZES,%20Jean-Luc&ANISZEWSKI,%20Wojciech&AUGUSTE,%20Franck&LING,%20Yue&OSMAR,%20Ludovic&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée