Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorHUBERT, Tessa
dc.contributor.authorDUGUÉ, Antoine
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorVOGT WU, Tingting
dc.contributor.authorAUJARD, Fabienne
dc.contributor.authorBRUNEAU, Denis
dc.date.accessioned2023-03-01T13:39:47Z
dc.date.available2023-03-01T13:39:47Z
dc.date.issued2022-01-26
dc.identifier.issn1996-1073en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/172126
dc.description.abstractEnBuilding envelopes can manage light, heat gains or losses, and ventilation and, as such, play a key role in the overall building performance. Research has been focusing on increasing their efficiency by proposing dynamic and adaptive systems, meaning that they evolve to best meet the internal and external varying conditions. Living organisms are relevant examples of adaptability as they have evolved, facing extreme conditions while maintaining stable internal conditions for survival. From a framework based on the inspiration of living envelopes such as animal constructions or biological skins, the concept of an adaptive envelope inspired by the Morpho butterfly was proposed. The system can manage heat, air, and light transfers going through the building and includes adaptive elements with absorption coefficients varying with temperature. This paper presents the developed framework that led to the final concept as well as the concept implementation and assessment. A prototype for heat and light management was built and integrated into a test bench. Measurements were performed to provide a first assessment of the system. In parallel, geometrical parametric models were created to compare multiple configurations in regards to indicators such as air, light, or heat transfers. One of the models provided light projections on the system that were compared with measurements and validated as suitable inputs in grey-box models for the system characterization.
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subject.enBioinspiration
dc.subject.enAdaptive skin
dc.subject.enProduct design
dc.subject.enParametric
dc.subject.enRegulation factors
dc.subject.enBiological models
dc.title.enAn Adaptive Building Skin Concept Resulting from a New Bioinspiration Process: Design, Prototyping, and Characterization
dc.typeArticle de revueen_US
dc.identifier.doi10.3390/en15030891en_US
dc.subject.halSciences de l'ingénieur [physics]/Matériauxen_US
bordeaux.journalEnergiesen_US
bordeaux.volume15en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.issue3en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.exportfalse
dc.rights.ccCC BYen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Energies&rft.date=2022-01-26&rft.volume=15&rft.issue=3&rft.eissn=1996-1073&rft.issn=1996-1073&rft.au=HUBERT,%20Tessa&DUGU%C3%89,%20Antoine&VOGT%20WU,%20Tingting&AUJARD,%20Fabienne&BRUNEAU,%20Denis&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée