Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorMAIRE, Jeremie
IDREF: 19427585X
dc.contributor.authorCHÁVEZ-ÁNGEL, Emigdio
dc.contributor.authorARREGUI, Guillermo
dc.contributor.authorCOLOMBANO, Martin F.
dc.contributor.authorCAPUJ, Nestor E.
dc.contributor.authorGRIOL, Amadeu
dc.contributor.authorMARTÍNEZ, Alejandro
dc.contributor.authorNAVARRO-URRIOS, Daniel
dc.contributor.authorAHOPELTO, Jouni
dc.contributor.authorSOTOMAYOR-TORRES, Clivia M.
dc.date.accessioned2023-01-30T09:22:28Z
dc.date.available2023-01-30T09:22:28Z
dc.date.issued2022
dc.identifier.issn1616-3028en_US
dc.identifier.otherhttp://doi.org/10.5281/zenodo.5508747en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/171820
dc.description.abstractEnControlling thermal energy transfer at the nanoscale and thermal properties has become critically important in many applications since it often limits device performance. In this study, the effects on thermal conductivity arising from the nanoscale structure of free-standing nanocrystalline silicon films and the increasing surface-to-volume ratio when fabricated into suspended optomechanical nanobeams are studied. Thermal transport and elucidate the relative impact of different grain size distributions and geometrical dimensions on thermal conductivity are characterized. A micro time-domain thermoreflectance method to study free-standing nanocrystalline silicon films and find a drastic reduction in the thermal conductivity, down to values below 10 W m–1 K–1 is used, with a stronger decrease for smaller grains. In optomechanical nanostructures, this effect is smaller than in membranes due to the competition of surface scattering in decreasing thermal conductivity. Finally, a novel versatile contactless characterization technique that can be adapted to any structure supporting a thermally shifted optical resonance is introduced. The thermal conductivity data agrees quantitatively with the thermoreflectance measurements. This study opens the way to a more generalized thermal characterization of optomechanical cavities and to create hot-spots with engineered shapes at the desired position in the structures as a means to study thermal transport in coupled photon-phonon structures.
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subject.ennanostructured materials
dc.subject.enoptomechanics
dc.subject.enphonons
dc.subject.enpolycrystalline
dc.subject.ensilicon
dc.subject.enthermal characterization methods
dc.subject.enthermal conduction
dc.title.enThermal Properties of Nanocrystalline Silicon Nanobeams
dc.typeArticle de revueen_US
dc.identifier.doi10.1002/adfm.202105767en_US
dc.subject.halSciences de l'ingénieur [physics]/Matériauxen_US
dc.description.sponsorshipEuropeAll-Phononic circuits Enabled by Opto-mechanicsen_US
bordeaux.journalAdvanced Functional Materialsen_US
bordeaux.volume32en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.issue4en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.exportfalse
dc.rights.ccCC BYen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Advanced%20Functional%20Materials&rft.date=2022&rft.volume=32&rft.issue=4&rft.eissn=1616-3028&rft.issn=1616-3028&rft.au=MAIRE,%20Jeremie&CH%C3%81VEZ-%C3%81NGEL,%20Emigdio&ARREGUI,%20Guillermo&COLOMBANO,%20Martin%20F.&CAPUJ,%20Nestor%20E.&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée