Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorREGNARD, Nor-Eddine
dc.contributor.authorLANSEUR, Boubekeur
dc.contributor.authorVENTRE, Jeanne
dc.contributor.authorDUCAROUGE, Alexis
dc.contributor.authorCLOVIS, Lauryane
dc.contributor.authorLASSALLE, Louis
dc.contributor.authorLACAVE, Elise
dc.contributor.authorGRANDJEAN, Albane
dc.contributor.authorLAMBERT, Aurélien
hal.structure.identifierCentre de résonance magnétique des systèmes biologiques [CRMSB]
dc.contributor.authorDALLAUDIERE, Benjamin
dc.contributor.authorFEYDY, Antoine
dc.date.accessioned2022-11-22T08:52:59Z
dc.date.available2022-11-22T08:52:59Z
dc.date.issued2022-09-01
dc.identifier.issn1872-7727en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/170339
dc.description.abstractEnTo appraise the performances of an AI trained to detect and localize skeletal lesions and compare them to the routine radiological interpretation. We retrospectively collected all radiographic examinations with the associated radiologists' reports performed after a traumatic injury of the limbs and pelvis during 3 consecutive months (January to March 2017) in a private imaging group of 14 centers. Each examination was analyzed by an AI (BoneView, Gleamer) and its results were compared to those of the radiologists' reports. In case of discrepancy, the examination was reviewed by a senior skeletal radiologist to settle on the presence of fractures, dislocations, elbow effusions, and focal bone lesions (FBL). The lesion-wise sensitivity of the AI and the radiologists' reports was compared for each lesion type. This study received IRB approval (CRM-2106-177). A total of 4774 exams were included in the study. Lesion-wise sensitivity was 73.7% for the radiologists' reports vs. 98.1% for the AI (+24.4 points) for fracture detection, 63.3% vs. 89.9% (+26.6 points) for dislocation detection, 84.7% vs. 91.5% (+6.8 points) for elbow effusion detection, and 16.1% vs. 98.1% (+82 points) for FBL detection. The specificity of the radiologists' reports was always 100% whereas AI specificity was 88%, 99.1%, 99.8%, 95.6% for fractures, dislocations, elbow effusions, and FBL respectively. The NPV was measured at 99.5% for fractures, 99.8% for dislocations, and 99.9% for elbow effusions and FBL. AI has the potential to prevent diagnosis errors by detecting lesions that were initially missed in the radiologists' reports.
dc.language.isoENen_US
dc.subject.enAlgorithms
dc.subject.enDeep Learning
dc.subject.enElbow
dc.subject.enFracture Dislocation
dc.subject.enFractures
dc.subject.enBone
dc.subject.enHumans
dc.subject.enJoint Dislocations
dc.subject.enRadiologists
dc.subject.enRetrospective Studies
dc.subject.enX-Rays
dc.title.enAssessment of performances of a deep learning algorithm for the detection of limbs and pelvic fractures, dislocations, focal bone lesions, and elbow effusions on trauma X-rays.
dc.title.alternativeEur J Radiolen_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.ejrad.2022.110447en_US
dc.subject.halSciences du Vivant [q-bio]/Médecine humaine et pathologieen_US
dc.identifier.pubmed35921795en_US
bordeaux.journalEuropean Journal of Radiologyen_US
bordeaux.page110447en_US
bordeaux.volume154en_US
bordeaux.hal.laboratoriesCentre de Résonance Magnétique des Systèmes Biologiques (CRMSB) - UMR 5536en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcepubmed
hal.identifierhal-03864969
hal.version1
hal.date.transferred2022-11-22T08:53:05Z
hal.exporttrue
workflow.import.sourcepubmed
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=European%20Journal%20of%20Radiology&rft.date=2022-09-01&rft.volume=154&rft.spage=110447&rft.epage=110447&rft.eissn=1872-7727&rft.issn=1872-7727&rft.au=REGNARD,%20Nor-Eddine&LANSEUR,%20Boubekeur&VENTRE,%20Jeanne&DUCAROUGE,%20Alexis&CLOVIS,%20Lauryane&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée