Show simple item record

dc.rights.licenseopenen_US
dc.contributor.authorJONES, Jacob
dc.contributor.authorKOHFELD, Karen
dc.contributor.authorBOSTOCK, Helen
dc.contributor.authorCROSTA, Xavier
dc.contributor.authorLISTON, Melanie
dc.contributor.authorDUNBAR, Gavin
dc.contributor.authorCHASE, Zanna
dc.contributor.authorLEVENTER, Amy
dc.contributor.authorANDERSON, Harris
dc.contributor.authorJACOBSEN, Geraldine
dc.date.accessioned2022-11-15T16:31:30Z
dc.date.available2022-11-15T16:31:30Z
dc.date.issued2022-03-14
dc.identifier.issn1814-9324en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/170273
dc.description.abstractEnSea ice expansion in the Southern Ocean is believed to have contributed to glacial–interglacial atmospheric CO2 variability by inhibiting air–sea gas exchange and influencing the ocean's meridional overturning circulation. However, limited data on past sea ice coverage over the last 140 ka (a complete glacial cycle) have hindered our ability to link sea ice expansion to oceanic processes that affect atmospheric CO2 concentration. Assessments of past sea ice coverage using diatom assemblages have primarily focused on the Last Glacial Maximum (∼21 ka) to Holocene, with few quantitative reconstructions extending to the onset of glacial Termination II (∼135 ka). Here we provide new estimates of winter sea ice concentrations (WSIC) and summer sea surface temperatures (SSST) for a full glacial–interglacial cycle from the southwestern Pacific sector of the Southern Ocean using the modern analog technique (MAT) on fossil diatom assemblages from deep-sea core TAN1302-96. We examine how the timing of changes in sea ice coverage relates to ocean circulation changes and previously proposed mechanisms of early glacial CO2 drawdown. We then place SSST estimates within the context of regional SSST records to better understand how these surface temperature changes may be influencing oceanic CO2 uptake. We find that winter sea ice was absent over the core site during the early glacial period until MIS 4 (∼65 ka), suggesting that sea ice may not have been a major contributor to early glacial CO2 drawdown. Sea ice expansion throughout the glacial–interglacial cycle, however, appears to coincide with observed regional reductions in Antarctic Intermediate Water production and subduction, suggesting that sea ice may have influenced intermediate ocean circulation changes. We observe an early glacial (MIS 5d) weakening of meridional SST gradients between 42 and 59∘ S throughout the region, which may have contributed to early reductions in atmospheric CO2 concentrations through its impact on air–sea gas exchange.
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.title.enSea ice changes in the southwest Pacific sector of the Southern Ocean during the last 140 000 years
dc.typeArticle de revueen_US
dc.identifier.doi10.5194/cp-18-465-2022en_US
dc.subject.halSciences de l'environnementen_US
bordeaux.journalClimate of the Pasten_US
bordeaux.page465-483en_US
bordeaux.volume18en_US
bordeaux.hal.laboratoriesEPOC : Environnements et Paléoenvironnements Océaniques et Continentaux - UMR 5805en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.identifier.funderIDAustralian Nuclear Science and Technology Organisationen_US
hal.identifierhal-03609123
hal.version1
hal.exportfalse
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Climate%20of%20the%20Past&rft.date=2022-03-14&rft.volume=18&rft.spage=465-483&rft.epage=465-483&rft.eissn=1814-9324&rft.issn=1814-9324&rft.au=JONES,%20Jacob&KOHFELD,%20Karen&BOSTOCK,%20Helen&CROSTA,%20Xavier&LISTON,%20Melanie&rft.genre=article


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record