Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorHOPKINS, Julia
dc.contributor.authorDE SCHIPPER, Matthieu
dc.contributor.authorWENGROVE, Meagan
dc.contributor.authorCASTELLE, Bruno
IDREF: 087596520
dc.date.accessioned2022-11-08T15:20:38Z
dc.date.available2022-11-08T15:20:38Z
dc.date.issued2022-08-24
dc.identifier.issn2077-1312en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/170233
dc.description.abstractEnObservations from wave basin experiments and wave-resolving numerical simulations demonstrate the effect of wave-current interaction on shear stress around a sandy mound. Observations from the wave basin show that the mound deformation rate and morphological patterns depend on the mixture of waves and currents in the incident flow conditions. A SWASH nonhydrostatic numerical model was used to expand the parameter space of wave-current conditions observed in the flume and characterize the response of the near-bed shear stress to the mound. The model was validated with observations from wave-alone, current-alone, and wave-current flume tests and then ran for a suite of numerical flow conditions which isolate the impact of the ratio of wave-current energy on the bed shear stress. Results show how the current-to-wave ratio impacts the spatial heterogeneity of shear stress across the mound, with the region of shear stress intensification around the mound and the location of the peak shear stress becoming asymmetric with more mixed wave-current flows. These results show the nonlinear response of shear stress patterns to combined wave-current flows and how these patterns may impact eventual sediment transport and mound evolution.
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subject.enBed shear stress
dc.subject.enWave lab experiments
dc.subject.enWave-current interaction
dc.subject.enWave-resolved models
dc.title.enWave-Current Impact on Shear Stress Patterns around 3D Shallow Bedforms
dc.typeArticle de revueen_US
dc.identifier.doi10.3390/jmse10091178en_US
dc.subject.halSciences de l'environnementen_US
dc.description.sponsorshipEuropeHYDRALAB+ Adapting to climate changeen_US
bordeaux.journalJournal of Marine Science and Engineeringen_US
bordeaux.volume10en_US
bordeaux.hal.laboratoriesEPOC : Environnements et Paléoenvironnements Océaniques et Continentaux - UMR 5805en_US
bordeaux.issue9en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.identifierhal-03830555
hal.version1
hal.exportfalse
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Marine%20Science%20and%20Engineering&rft.date=2022-08-24&rft.volume=10&rft.issue=9&rft.eissn=2077-1312&rft.issn=2077-1312&rft.au=HOPKINS,%20Julia&DE%20SCHIPPER,%20Matthieu&WENGROVE,%20Meagan&CASTELLE,%20Bruno&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée