Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorDANOUN, Aymen
IDREF: 256486999
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorPRULIÈRE, Etienne
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorCHEMISKY, Yves
IDREF: 143502301
dc.date.accessioned2022-10-14T12:24:31Z
dc.date.available2022-10-14T12:24:31Z
dc.date.issued2022-10-01
dc.identifier.issn0167-6636en_US
dc.identifier.urioai:crossref.org:10.1016/j.mechmat.2022.104436
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/170000
dc.description.abstractEnThe present work aims at proposing a hybrid physics-AI based model to predict non-linear mechanical behaviors of dissipative materials. By introducing a specific Neural Network architecture called Thermodynamically Consistent Recurrent Neural Networks (ThC-RNN), this study proposes a new paradigm for the simulation of dissipative materials under complex loading conditions. The design of such architecture allows to take into account the material loading history subjected to multi-axial and non-proportional loading paths, similarly to internal variables for homogeneous materials. A special focus has been given to the respect of thermodynamics principles in the ThC-RNN model by introducing specific thermodynamical constraints during the training phase. Finally, the model’s reliability has been tested on different plasticity models once the training is completed. It is shown that thermodynamic consistency improves significantly the prediction capabilities of the ThC-RNN model, considering several outputs such as stress tensor and tangent modulus components, state variables and mechanical work rate partition (recoverable part, irrecoverable part and dissipative part).
dc.language.isoENen_US
dc.sourcecrossref
dc.subject.enRecurrent Neural Network (RNN)
dc.subject.enPlasticity
dc.subject.enDissipative materials
dc.subject.enNon-proportional loadings
dc.subject.enThermodynamics
dc.title.enThermodynamically consistent Recurrent Neural Networks to predict non linear behaviors of dissipative materials subjected to non-proportional loading paths
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.mechmat.2022.104436en_US
dc.subject.halSciences de l'ingénieur [physics]/Matériauxen_US
bordeaux.journalMechanics of Materialsen_US
bordeaux.page104436en_US
bordeaux.volume173en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.identifierhal-03815188
hal.version1
hal.date.transferred2022-10-14T12:24:33Z
hal.exporttrue
workflow.import.sourcedissemin
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Mechanics%20of%20Materials&rft.date=2022-10-01&rft.volume=173&rft.spage=104436&rft.epage=104436&rft.eissn=0167-6636&rft.issn=0167-6636&rft.au=DANOUN,%20Aymen&PRULI%C3%88RE,%20Etienne&CHEMISKY,%20Yves&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée