Show simple item record

hal.structure.identifierONERA, Université Paris Saclay [Châtillon]
dc.contributor.authorATTAL-TRÉTOUT, Brigitte
hal.structure.identifierONERA, Université Paris Saclay [Châtillon]
dc.contributor.authorBERVAS, Hervé
hal.structure.identifierONERA, Université Paris Saclay [Châtillon]
dc.contributor.authorTARAN, Jean-Pierre
hal.structure.identifierCentre de physique moléculaire optique et hertzienne [CPMOH]
dc.contributor.authorLEBOITEUX, Sylvie
hal.structure.identifierTufts University [Medford]
dc.contributor.authorKELLEY, Paul
hal.structure.identifierDepartment of Electrical Engineering and Computer Sciences [Berkeley EECS]
dc.contributor.authorGUSTAFSON, T. Kenneth
dc.date.issued1997-02-14
dc.identifier.issn0953-4075
dc.description.abstractEnThe present paper deals with a three-level model of interaction with three crosspolarized and co-propagating fields having the same frequency. The two pump waves havearbitrary intensities and the third one (the probe wave) is assumed to be non-saturating. Using the radiative renormalization method, density matrix equations are solved analytically. The forward degenerate four-wave mixing (FDFWM) signal is calculated under thermodynamic conditions where collisional and Doppler broadenings are comparable. The calculation also takes into account crossed-polarization effects. The FDFWM intensity is computed as a function of power densities and pressure. FDFWM experimental spectra of the 26+–25 (0–0) band of OH obtained in a welding torch flame are compared to theoretical profiles. For incident laser intensities in the range of a few MW cm−2, a good agreement is obtained between calculated and experimental profiles. Discrepancies arise under stronger conditions of saturation, showing the limits of application of our model. However, because there is little virtue in using higher laser powers, the model should be extremely useful in practical applications. In particular, we demonstrate that the signal intensity is optimal and the pressure dependence is minimized when the saturation parameter is unity.
dc.language.isoen
dc.publisherIOP Publishing
dc.title.enSaturated FDFWM lineshapes and intensities: Theory and application to quantitative measurements in flames
dc.typeArticle de revue
dc.identifier.doi10.1088/0953-4075/30/3/008
dc.subject.halPhysique [physics]
bordeaux.journalJournal of Physics B: Atomic, Molecular and Optical Physics
bordeaux.page497-522
bordeaux.volume30
bordeaux.issue3
bordeaux.peerReviewedoui
hal.identifierhal-01550168
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01550168v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Physics%20B:%20Atomic,%20Molecular%20and%20Optical%20Physics&rft.date=1997-02-14&rft.volume=30&rft.issue=3&rft.spage=497-522&rft.epage=497-522&rft.eissn=0953-4075&rft.issn=0953-4075&rft.au=ATTAL-TR%C3%89TOUT,%20Brigitte&BERVAS,%20Herv%C3%A9&TARAN,%20Jean-Pierre&LEBOITEUX,%20Sylvie&KELLEY,%20Paul&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record