Show simple item record

hal.structure.identifierCentre de physique moléculaire optique et hertzienne [CPMOH]
hal.structure.identifierDepartment of Chemistry, Smalley Institute for Nanoscale Science and Technology, and Center for Biological and Environmental Nanotechnology
dc.contributor.authorCOGNET, Laurent
hal.structure.identifierDepartment of Chemistry, Smalley Institute for Nanoscale Science and Technology, and Center for Biological and Environmental Nanotechnology
dc.contributor.authorA. TSYBOULSKI, Dmitri
hal.structure.identifierDepartment of Chemistry, Smalley Institute for Nanoscale Science and Technology, and Center for Biological and Environmental Nanotechnology
dc.contributor.authorR. ROCHA, John-David
hal.structure.identifierDepartment of Chemistry, Smalley Institute for Nanoscale Science and Technology, and Center for Biological and Environmental Nanotechnology
dc.contributor.authorD. DOYLE, Condell
hal.structure.identifierDepartment of Chemistry, Smalley Institute for Nanoscale Science and Technology, and Center for Biological and Environmental Nanotechnology
dc.contributor.authorM. TOUR, James
hal.structure.identifierDepartment of Chemistry, Smalley Institute for Nanoscale Science and Technology, and Center for Biological and Environmental Nanotechnology
dc.contributor.authorWEISMAN, R. Bruce
dc.date.issued2007-06-08
dc.identifier.issn0036-8075
dc.description.abstractEnSingle-molecule chemical reactions with individual single-walled carbon nanotubes were observed through near-infrared photoluminescence microscopy. The emission intensity within distinct submicrometer segments of single nanotubes changes in discrete steps after exposure to acid, base, or diazonium reactants. The steps are uncorrelated in space and time, and reflect the quenching of mobile excitons at localized sites of reversible or irreversible chemical attack. Analysis of step amplitudes reveals an exciton diffusional range of about 90 nanometers, independent of nanotube structure. Each exciton visits approximately 104 atomic sites during its lifetime, providing highly efficient sensing of local chemical and physical perturbations.
dc.language.isoen
dc.publisherAmerican Association for the Advancement of Science (AAAS)
dc.title.enStepwise Quenching of Exciton Fluorescence in Carbon Nanotubes by Single Molecule Reactions
dc.typeArticle de revue
dc.identifier.doi10.1126/science.1141316
dc.subject.halPhysique [physics]/Physique [physics]/Optique [physics.optics]
dc.subject.halPhysique [physics]/Matière Condensée [cond-mat]/Autre [cond-mat.other]
dc.identifier.arxiv0707.3246
bordeaux.journalScience
bordeaux.page1465-1468
bordeaux.volume316
bordeaux.issue5830
bordeaux.peerReviewedoui
hal.identifierhal-00164617
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00164617v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Science&rft.date=2007-06-08&rft.volume=316&rft.issue=5830&rft.spage=1465-1468&rft.epage=1465-1468&rft.eissn=0036-8075&rft.issn=0036-8075&rft.au=COGNET,%20Laurent&A.%20TSYBOULSKI,%20Dmitri&R.%20ROCHA,%20John-David&D.%20DOYLE,%20Condell&M.%20TOUR,%20James&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record