Show simple item record

hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
dc.contributor.authorMANGEAT, Matthieu
hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
dc.contributor.authorGUÉRIN, Thomas
hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
dc.contributor.authorDEAN, David S.
dc.date.issued2017-12-13
dc.identifier.issn1742-5468
dc.description.abstractEnWe examine the dispersion of Brownian particles in a symmetric two dimensional channel, this classical problem has been widely studied in the literature using the so called Fick–Jacobs' approximation and its various improvements. Most studies rely on the reduction to an effective one dimensional diffusion equation, here we derive an explicit formula for the diffusion constant which avoids this reduction. Using this formula the effective diffusion constant can be evaluated numerically without resorting to Brownian simulations. In addition, a perturbation theory can be developed in ε = h0 /L where h0 is the characteristic channel height and L the period. This perturbation theory confirms the results of Kalinay and Percus (2006 Phys. Rev. E 74 041203), based on the reduction, to one dimensional diffusion are exact at least to O(ε 6). Furthermore, we show how the Kalinay and Percus pseudo-linear approximation can be straightforwardly recovered. The approach proposed here can also be exploited to yield exact results in the limit ε → ∞, we show that here the diffusion constant remains finite and show how the result can be obtained with a simple physical argument. Moreover, we show that the correction to the effective diffusion constant is of order 1/ε and remarkably has some universal characteristics. Numerically we compare the analytic results obtained with exact numerical calculations for a number of interesting channel geometries.
dc.language.isoen
dc.publisherIOP Publishing
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/
dc.title.enDispersion in two dimensional channels—the Fick–Jacobs approximation revisited
dc.typeArticle de revue
dc.identifier.doi10.1088/1742-5468/aa9bb5
dc.subject.halPhysique [physics]/Matière Condensée [cond-mat]/Mécanique statistique [cond-mat.stat-mech]
dc.identifier.arxiv1710.02699
bordeaux.journalJournal of Statistical Mechanics: Theory and Experiment
bordeaux.page123205
bordeaux.volume2017
bordeaux.issue12
bordeaux.peerReviewedoui
hal.identifierhal-01666827
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01666827v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Statistical%20Mechanics:%20Theory%20and%20Experiment&rft.date=2017-12-13&rft.volume=2017&rft.issue=12&rft.spage=123205&rft.epage=123205&rft.eissn=1742-5468&rft.issn=1742-5468&rft.au=MANGEAT,%20Matthieu&GU%C3%89RIN,%20Thomas&DEAN,%20David%20S.&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record