Mostrar el registro sencillo del ítem
Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms
hal.structure.identifier | Advanced Learning Evolutionary Algorithms [ALEA] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Quality control and dynamic reliability [CQFD] | |
dc.contributor.author | TODESCHINI, Adrien | |
hal.structure.identifier | Department of Statistics [Oxford] | |
dc.contributor.author | CARON, Francois | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Quality control and dynamic reliability [CQFD] | |
dc.contributor.author | CHAVENT, Marie | |
dc.contributor.editor | Burges | |
dc.contributor.editor | C. and Bottou | |
dc.contributor.editor | L. and Welling | |
dc.contributor.editor | M. and Ghahramani | |
dc.contributor.editor | Z. and Weinberger | |
dc.contributor.editor | K. | |
dc.date.created | 2013-06 | |
dc.date.issued | 2013-12 | |
dc.date.conference | 2013-12 | |
dc.description.abstractEn | We propose a novel class of algorithms for low rank matrix completion. Our approach builds on novel penalty functions on the singular values of the low rank matrix. By exploiting a mixture model representation of this penalty, we show that a suitably chosen set of latent variables enables to derive an Expectation-Maximization algorithm to obtain a Maximum A Posteriori estimate of the completed low rank matrix. The resulting algorithm is an iterative soft-thresholded algorithm which iteratively adapts the shrinkage coefficients associated to the singular values. The algorithm is simple to implement and can scale to large matrices. We provide numerical comparisons between our approach and recent alternatives showing the interest of the proposed approach for low rank matrix completion. | |
dc.language.iso | en | |
dc.publisher | Curran Associates, Inc. | |
dc.title.en | Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms | |
dc.type | Communication dans un congrès | |
dc.subject.hal | Statistiques [stat]/Machine Learning [stat.ML] | |
dc.subject.hal | Statistiques [stat]/Méthodologie [stat.ME] | |
dc.subject.hal | Statistiques [stat]/Calcul [stat.CO] | |
dc.subject.hal | Statistiques [stat]/Applications [stat.AP] | |
bordeaux.page | 845-853 | |
bordeaux.volume | 26 | |
bordeaux.conference.title | NIPS - The Neural Information Processing Systems Conference | |
bordeaux.country | US | |
bordeaux.conference.city | South Lake Tahoe | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01025508 | |
hal.version | 1 | |
hal.invited | non | |
hal.proceedings | oui | |
hal.conference.organizer | The Neural Information Processing Systems (NIPS) Foundation, Inc. | |
hal.conference.end | 2013-12 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01025508v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2013-12&rft.volume=26&rft.spage=845-853&rft.epage=845-853&rft.au=TODESCHINI,%20Adrien&CARON,%20Francois&CHAVENT,%20Marie&rft.genre=unknown |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |