An Asymptotic-Preserving Scheme for Systems of Conservation Laws with Source Terms on 2D Unstructured Meshes
hal.structure.identifier | Université de Nantes [UN] | |
hal.structure.identifier | Laboratoire de Mathématiques Jean Leray [LMJL] | |
dc.contributor.author | BERTHON, C | |
hal.structure.identifier | Laboratoire de Mathématiques Jean Leray [LMJL] | |
hal.structure.identifier | Université de Nantes [UN] | |
dc.contributor.author | MOEBS, G | |
hal.structure.identifier | Laboratoire de Mathématiques Jean Leray [LMJL] | |
dc.contributor.author | SARAZIN-DESBOIS, C | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Institut Polytechnique de Bordeaux [Bordeaux INP] | |
dc.contributor.author | TURPAULT, Rodolphe | |
dc.date.issued | 2016 | |
dc.identifier.issn | 1559-3940 | |
dc.description.abstractEn | In this paper, finite volumes numerical schemes are developed for hyperbolic systems of conservation laws with source terms. The systems under consideration degenerate into parabolic systems in large times when the source terms become stiff. In this framework, it is crucial that the numerical schemes are asymptotic-preserving ı.e. that they degenerate accordingly. Here, an asymptotic-preserving numerical scheme is proposed for any system within the aforementioned class on 2D unstructured meshes. This scheme is proved to be consistent and stable under a suitable CFL condition. Moreover, we show that it is also possible to prove that it preserves the set of (physically) admissible states under a geometrical property on the mesh. Finally, numerical examples are given to illustrate its behavior. | |
dc.description.sponsorship | Centre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation - ANR-11-LABX-0020 | |
dc.language.iso | en | |
dc.publisher | Mathematical Sciences Publishers | |
dc.title.en | An Asymptotic-Preserving Scheme for Systems of Conservation Laws with Source Terms on 2D Unstructured Meshes | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1007/978-3-319-05684-5_9 | |
dc.subject.hal | Mathématiques [math]/Analyse numérique [math.NA] | |
bordeaux.journal | Communications in Applied Mathematics and Computational Science | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01255899 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01255899v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Communications%20in%20Applied%20Mathematics%20and%20Computational%20Science&rft.date=2016&rft.eissn=1559-3940&rft.issn=1559-3940&rft.au=BERTHON,%20C&MOEBS,%20G&SARAZIN-DESBOIS,%20C&TURPAULT,%20Rodolphe&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |