Afficher la notice abrégée

hal.structure.identifierTohoku University [Sendai]
dc.contributor.authorISHIGE, Kazuhiro
hal.structure.identifierOsaka Prefecture University
dc.contributor.authorKABEYA, Yoshitsugu
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorOUHABAZ, El Maati
dc.date.created2016-02-01
dc.date.issued2017
dc.identifier.issn0024-6115
dc.description.abstractEnWe consider the Schrödinger operator H = −∆ + V (|x|) with radial potential V which may have singularity at 0 and a quadratic decay at infinity. First, we study the structure of positive harmonic functions of H and give their precise behavior. Second, under quite general conditions we prove an upper bound for the correspond heat kernel p(x, y, t) of the type 0 < p(x, y, t) ≤ C t − N 2 U (min{|x|, √ t})U (min{|y|, √ t}) U (√ t) 2 exp − |x − y| 2 Ct for all x, y ∈ R N and t > 0, where U is a positive harmonic function of H. Third, if U 2 is an A 2 weight on R N , then we prove a lower bound of a similar type.
dc.description.sponsorshipAux frontières de l'analyse Harmonique - ANR-12-BS01-0013
dc.language.isoen
dc.publisherLondon Mathematical Society
dc.title.enThe heat kernel of a Schrödinger operator with inverse square potential
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
dc.identifier.arxiv1602.04172
bordeaux.journalProceedings of the London Mathematical Society
bordeaux.peerReviewedoui
hal.identifierhal-01273288
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01273288v1
bordeaux.COinSctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.jtitle=Proceedings%20of%20the%20London%20Mathematical%20Society&amp;rft.date=2017&amp;rft.eissn=0024-6115&amp;rft.issn=0024-6115&amp;rft.au=ISHIGE,%20Kazuhiro&amp;KABEYA,%20Yoshitsugu&amp;OUHABAZ,%20El%20Maati&amp;rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée