The heat kernel of a Schrödinger operator with inverse square potential
Langue
en
Article de revue
Ce document a été publié dans
Proceedings of the London Mathematical Society. 2017
London Mathematical Society
Résumé en anglais
We consider the Schrödinger operator H = −∆ + V (|x|) with radial potential V which may have singularity at 0 and a quadratic decay at infinity. First, we study the structure of positive harmonic functions of H and give ...Lire la suite >
We consider the Schrödinger operator H = −∆ + V (|x|) with radial potential V which may have singularity at 0 and a quadratic decay at infinity. First, we study the structure of positive harmonic functions of H and give their precise behavior. Second, under quite general conditions we prove an upper bound for the correspond heat kernel p(x, y, t) of the type 0 < p(x, y, t) ≤ C t − N 2 U (min{|x|, √ t})U (min{|y|, √ t}) U (√ t) 2 exp − |x − y| 2 Ct for all x, y ∈ R N and t > 0, where U is a positive harmonic function of H. Third, if U 2 is an A 2 weight on R N , then we prove a lower bound of a similar type.< Réduire
Project ANR
Aux frontières de l'analyse Harmonique - ANR-12-BS01-0013
Origine
Importé de halUnités de recherche