Show simple item record

hal.structure.identifierInstituto de Microelectronica de Madrid [IMM]
dc.contributor.authorMUÑOZ ROJO, M.
hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
dc.contributor.authorGRAUBY, Stéphane
hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
dc.contributor.authorRAMPNOUX, Jean-Michel
hal.structure.identifierInstituto de Microelectronica de Madrid [IMM]
dc.contributor.authorCABALLERO-CALERO, O.
hal.structure.identifierInstituto de Microelectronica de Madrid [IMM]
dc.contributor.authorMARTIN-GONZALEZ, M.
hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
dc.contributor.authorDILHAIRE, Stefan
dc.date.created2012-11-23
dc.date.issued2013-02-07
dc.identifier.issn0021-8979
dc.description.abstractEnBi2Te3 is well-known for its utility in thermoelectrical applications and more recently as topological insulator. Its nanostructuration has attracted plenty of attention because of its potential capacity to reduce thermal conductivity. Here, we have grown a composite sample made of a Bi2Te3 nanowires (NWs) array embedded in an alumina matrix. We have then performed scanning thermal microscopy (SThM) in a 3ω configuration to measure its equivalent thermal resistance. Using an effective medium model, we could then estimate the mean composite thermal conductivity as well as the thermal conductivity of the NWs to be, respectively, (λC) = (1.68 +/- 0.20) W/mK and (λNW) = (1.37 +/- 0.20) W/mK, showing a slight thermal conductivity reduction. Up to now, there have been two main techniques reported in literature to evaluate the thermal conductivity of nanostructures: the use of a thermal microchip to probe a single NW once its matrix has been dissolved or the probing of the whole NWs array embedded in a matrix, obtaining the thermal conductivity of the whole as an effective medium. However, the 3ω-SThM presented here is the only technique able to measure the thermal conductivity of single NWs embedded in a matrix as well as the thermal conductivity of the composite locally. This technique is more versatile and straightforward than other methods to obtain the thermal conductivity of nanostructures.
dc.language.isoen
dc.publisherAmerican Institute of Physics
dc.subject.enalumina
dc.subject.enbismuth compounds
dc.subject.ennanocomposites
dc.subject.ennanofabrication
dc.subject.ennanowires
dc.subject.enthermal conductivity
dc.subject.enthermal resistance
dc.subject.entopological insulators
dc.subject.enMethods of nanofabrication and processing
dc.subject.enNonelectronic thermal conduction and heat-pulse propagation in solids
dc.subject.enthermal waves
dc.title.enFabrication of Bi2Te3 nanowire arrays and thermal conductivity measurement by 3ω-scanning thermal microscopy
dc.typeArticle de revue
dc.identifier.doi10.1063/1.4790363
dc.subject.halPhysique [physics]/Mécanique [physics]/Thermique [physics.class-ph]
dc.description.sponsorshipEuropeNano-engineered high performance Thermoelectric Energy Conversion devices
bordeaux.journalJournal of Applied Physics
bordeaux.page054308 (1-7)
bordeaux.volume113
bordeaux.issue5
bordeaux.peerReviewedoui
hal.identifierhal-00805572
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00805572v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Applied%20Physics&rft.date=2013-02-07&rft.volume=113&rft.issue=5&rft.spage=054308%20(1-7)&rft.epage=054308%20(1-7)&rft.eissn=0021-8979&rft.issn=0021-8979&rft.au=MU%C3%91OZ%20ROJO,%20M.&GRAUBY,%20St%C3%A9phane&RAMPNOUX,%20Jean-Michel&CABALLERO-CALERO,%20O.&MARTIN-GONZALEZ,%20M.&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record