On certain spaces of lattice diagram determinants
hal.structure.identifier | Théorie des Nombres et Algorithmique Arithmétique [A2X] | |
hal.structure.identifier | Laboratoire Bordelais de Recherche en Informatique [LaBRI] | |
dc.contributor.author | AVAL, Jean-Christophe | |
dc.date.created | 2001 | |
dc.date.issued | 2001 | |
dc.date.conference | 2000 | |
dc.description.abstractEn | The aim of this work is to study some lattice diagram polynomials $\Delta_D(X,Y)$. We recall that $M_D$ denotes the space of all partial derivatives of $\Delta_D$. In this paper, we want to study the space $M^k_{i,j}(X,Y)$ which is the sum of $M_D$ spaces where the lattice diagrams $D$ are obtained by removing $k$ cells from a given partition, these cells being in the ``shadow'' of a given cell $(i,j)$ of the Ferrers diagram. We obtain an upper bound for the dimension of the resulting space $M^k_{i,j}(X,Y)$, that we conjecture to be optimal. These upper bounds allow us to construct explicit bases for the subspace $M^k_{i,j}(X)$ consisting of elements of $0$ $Y$-degree. | |
dc.language.iso | en | |
dc.publisher | Edition du LaCIM | |
dc.source.title | Actes du colloque LACIM2000 | |
dc.title.en | On certain spaces of lattice diagram determinants | |
dc.type | Communication dans un congrès avec actes | |
dc.subject.hal | Mathématiques [math]/Combinatoire [math.CO] | |
dc.identifier.arxiv | 0711.0902 | |
bordeaux.page | 43-51 | |
bordeaux.country | CA | |
bordeaux.title.proceeding | LaCIM2000 | |
bordeaux.conference.city | Montréal | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00185527 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00185527v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.btitle=Actes%20du%20colloque%20LACIM2000&rft.date=2001&rft.spage=43-51&rft.epage=43-51&rft.au=AVAL,%20Jean-Christophe&rft.genre=proceeding |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |