Afficher la notice abrégée

hal.structure.identifierLithe and fast algorithmic number theory [LFANT]
hal.structure.identifierAlgorithmic number theory for cryptology [TANC]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorENGE, Andreas
dc.date.issued2009
dc.identifier.issn0025-5718
dc.descriptionTo appear in Mathematics of Computation.
dc.description.abstractEnWe analyse and compare the complexity of several algorithms for computing modular polynomials. We show that an algorithm relying on floating point evaluation of modular functions and on interpolation, which has received little attention in the literature, has a complexity that is essentially (up to logarithmic factors) linear in the size of the computed polynomials. In particular, it obtains the classical modular polynomials $\Phi_\ell$ of prime level $\ell$ in time O (\ell^3 \log^4 \ell \log \log \ell). Besides treating modular polynomials for $\Gamma^0 (\ell)$, which are an important ingredient in many algorithms dealing with isogenies of elliptic curves, the algorithm is easily adapted to more general situations. Composite levels are handled just as easily as prime levels, as well as polynomials between a modular function and its transform of prime level, such as the Schläfli polynomials and their generalisations. Our distributed implementation of the algorithm confirms the theoretical analysis by computing modular equations of record level around $10000$ in less than two weeks on ten processors.
dc.language.isoen
dc.publisherAmerican Mathematical Society
dc.title.enComputing modular polynomials in quasi-linear time
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Théorie des nombres [math.NT]
dc.subject.halInformatique [cs]/Complexité [cs.CC]
dc.identifier.arxiv0704.3177
bordeaux.journalMathematics of Computation
bordeaux.page1809-1824
bordeaux.volume78
bordeaux.issue267
bordeaux.peerReviewedoui
hal.identifierinria-00143084
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//inria-00143084v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Mathematics%20of%20Computation&rft.date=2009&rft.volume=78&rft.issue=267&rft.spage=1809-1824&rft.epage=1809-1824&rft.eissn=0025-5718&rft.issn=0025-5718&rft.au=ENGE,%20Andreas&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée