Lifting results for rational points on Hurwitz moduli spaces
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Théorie des Nombres et Algorithmique Arithmétique [A2X] | |
dc.contributor.author | CADORET, Anna | |
dc.date.issued | 2008 | |
dc.identifier.issn | 0021-2172 | |
dc.description.abstractEn | Hurwitz moduli spaces for G-covers of the pro jective line have two classical variants whether G- covers are considered modulo the action of PGL2 on the base or not. A central result of this paper is that, given an integer r ≥ 3 there exists a bound d(r) ≥ 1 depending only on r such that any rational point p rd of a reduced (i.e. modulo PGL2 ) Hurwitz space can be lifted to a rational point p on the non reduced Hurwitz space with [κ(p) : κ(prd )] ≤ d(r). This result can also be generalized to infinite towers of Hurwitz spaces. Introducing a new Galois invariant for G-covers, which we call the base invariant, we improve this result for G-covers with a non trivial base invariant. For the sublocus corresponding to such G-covers the bound d(r) can be chosen depending only on the base invariant (no longer on r) and ≤ 6. When r = 4, our method can still be refined to provide effective criteria to lift k-rational points from reduced to non reduced Hurwitz spaces. This, in particular, leads to a rigidity criterion, a genus 0 method and, what we call an expansion method to realize finite groups as regular Galois groups over Q. Some specific examples are given. | |
dc.language.iso | en | |
dc.publisher | Springer | |
dc.title.en | Lifting results for rational points on Hurwitz moduli spaces | |
dc.type | Article de revue | |
bordeaux.journal | Israel Journal of Mathematics | |
bordeaux.page | 19-61 | |
bordeaux.volume | 164 | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00355695 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00355695v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Israel%20Journal%20of%20Mathematics&rft.date=2008&rft.volume=164&rft.spage=19-61&rft.epage=19-61&rft.eissn=0021-2172&rft.issn=0021-2172&rft.au=CADORET,%20Anna&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |