Afficher la notice abrégée

hal.structure.identifierLaboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
dc.contributor.authorCHEBIL, Mohamed Souheib
hal.structure.identifierÉcole normale supérieure - Paris [ENS-PSL]
hal.structure.identifierLaboratoire Microfluidique, MEMS, Nanostructures [MMN]
dc.contributor.authorMCGRAW, Joshua D.
hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
hal.structure.identifierHokkaido University [Sapporo, Japan]
dc.contributor.authorSALEZ, Thomas
hal.structure.identifierLaboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
dc.contributor.authorSOLLOGOUB, Cyrille
hal.structure.identifierLaboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
dc.contributor.authorMIQUELARD-GARNIER, Guillaume
dc.date.created2018-03-21
dc.date.issued2018-08-14
dc.identifier.issn1744-683X
dc.description.abstractEnIn capillary-driven fluid dynamics, simple departures from equilibrium offer the chance to quantitatively model the resulting relaxations. These dynamics in turn provide insight on both practical and fundamental aspects of thin-film hydrodynamics. In this work, we describe a model trilayer dewetting experiment elucidating the effect of solid, no-slip confining boundaries on the bursting of a liquid film in a viscous environment. This experiment was inspired by an industrial polymer processing technique, multilayer coextrusion, in which thousands of alternating layers are stacked atop one another. When pushed to the nanoscale limit, the individual layers are found to break up on time scales shorter than the processing time. To gain insight on this dynamic problem, we here directly observe the growth rate of holes in the middle layer of the trilayer films described above, wherein the distance between the inner film and solid boundary can be orders of magnitude larger than its thickness. Under otherwise identical experimental conditions, thinner films break up faster than thicker ones. This observation is found to agree with a scaling model that balances capillary driving power and viscous dissipation with a no-slip boundary condition at the solid substrate/viscous environment boundary. In particular, even for the thinnest middle-layers, no finite-size effect related to the middle film is needed to explain the data. The dynamics of hole growth is captured by a single master curve over four orders of magnitude in the dimensionless hole radius and time, and is found to agree well with predictions including analytical expressions for the dissipation.
dc.description.sponsorshipParis Sciences et Lettres - ANR-10-IDEX-0001
dc.language.isoen
dc.publisherRoyal Society of Chemistry
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/
dc.title.enInfluence of outer-layer finite-size effects on the dewetting dynamics of a thin polymer film embedded in an immiscible matrix
dc.typeArticle de revue
dc.identifier.doi10.1039/C8SM00592C
dc.subject.halSciences de l'ingénieur [physics]
dc.subject.halPhysique [physics]/Matière Condensée [cond-mat]/Matière Molle [cond-mat.soft]
dc.identifier.arxiv1803.08117
bordeaux.journalSoft Matter
bordeaux.page6256-6263
bordeaux.volume14
bordeaux.issue30
bordeaux.peerReviewedoui
hal.identifierhal-01903139
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01903139v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Soft%20Matter&rft.date=2018-08-14&rft.volume=14&rft.issue=30&rft.spage=6256-6263&rft.epage=6256-6263&rft.eissn=1744-683X&rft.issn=1744-683X&rft.au=CHEBIL,%20Mohamed%20Souheib&MCGRAW,%20Joshua%20D.&SALEZ,%20Thomas&SOLLOGOUB,%20Cyrille&MIQUELARD-GARNIER,%20Guillaume&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée