Show simple item record

hal.structure.identifierLaboratoire Bordelais d'Analyse et Géométrie [LaBAG]
dc.contributor.authorWEIMANN, Martin
dc.date.created2004
dc.description.abstractEnWe show here how residue calculus (residue currents, Grothendieck residues, duality theorem) can be used to obtain an algebraic characterization of the Abel-transform of a meromorphic form on germs of analytic sets. We prove by this way a stronger version of Abel-inverse theorem with an "algebraic" approach and we show the link with Wood's theorem. Furthermore, we obtain a new method to bound easily the dimension of the vector space of abelian forms on an algebraic projective hypersurface.
dc.language.isoen
dc.titleLa trace via le calcul residuel: une nouvelle version du theoreme d'Abel-inverse, formes abeliennes
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Variables complexes [math.CV]
dc.subject.halMathématiques [math]/Algèbre commutative [math.AC]
dc.identifier.arxivmath.CV/0405491
hal.identifierhal-00011172
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00011172v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.title=La%20trace%20via%20le%20calcul%20residuel:%20une%20nouvelle%20version%20du%20theoreme%20d'Abel-inverse,%20formes%20abeliennes&rft.atitle=La%20trace%20via%20le%20calcul%20residuel:%20une%20nouvelle%20version%20du%20theoreme%20d'Abel-inverse,%20formes%20abeliennes&rft.au=WEIMANN,%20Martin&rft.genre=preprint


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record