On the Robustness of the Snell envelope
hal.structure.identifier | Advanced Learning Evolutionary Algorithms [ALEA] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | DEL MORAL, Pierre | |
hal.structure.identifier | Advanced Learning Evolutionary Algorithms [ALEA] | |
dc.contributor.author | HU, P. | |
hal.structure.identifier | Laboratoire Analyse, Géométrie et Applications [LAGA] | |
hal.structure.identifier | EDF [EDF] | |
dc.contributor.author | OUDJANE, Nadia | |
hal.structure.identifier | Méthodes Quantitatives de Gestion [MQG] | |
dc.contributor.author | RÉMILLARD, Bruno | |
dc.date.issued | 2011 | |
dc.description.abstractEn | We analyze the robustness properties of the Snell envelope backward evolution equation for the discrete time optimal stopping problem. We consider a series of approximation schemes, including cut-off type approximations, Euler discretization schemes, interpolation models, quantization tree models, and the Stochastic Mesh method of Broadie-Glasserman. In each situation, we provide non asymptotic convergence estimates, including Lp-mean error bounds and exponential concentration inequalities. We deduce these estimates from a single and general robustness property of Snell envelope semigroups. In particular, this analysis allows us to recover existing convergence results for the quantization tree method and to improve significantly the rates of convergence obtained for the Stochastic Mesh estimator of Broadie-Glasserman. In the second part of the article, we propose a new approach using a genealogical tree approximation of the reference Markov process in terms of a neutral type genetic model. In contrast to Broadie-Glasserman Monte Carlo models, the computational cost of this new stochastic particle approximation is linear in the number of sampled points. Some simulations results are provided and confirm the interest of this new algorithm. | |
dc.language.iso | en | |
dc.publisher | Society for Industrial and Applied Mathematics | |
dc.subject.en | Snell envelope | |
dc.subject.en | optimal stopping | |
dc.subject.en | American option pricing | |
dc.subject.en | genealogical trees | |
dc.subject.en | interacting particle model | |
dc.title.en | On the Robustness of the Snell envelope | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1137/100798016 | |
dc.subject.hal | Statistiques [stat]/Applications [stat.AP] | |
bordeaux.journal | SIAM Journal on Financial Mathematics | |
bordeaux.page | 951-997 | |
bordeaux.volume | 2 | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00641452 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00641452v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=SIAM%20Journal%20on%20Financial%20Mathematics&rft.date=2011&rft.volume=2&rft.spage=951-997&rft.epage=951-997&rft.au=DEL%20MORAL,%20Pierre&HU,%20P.&OUDJANE,%20Nadia&R%C3%89MILLARD,%20Bruno&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |