Mostrar el registro sencillo del ítem

hal.structure.identifierInstituto Tecnológico de Tijuana = Tijuana Institute of Technology [Tijuana]
dc.contributor.authorTRUJILLO, Leonardo
hal.structure.identifierInstituto Tecnológico de Tijuana = Tijuana Institute of Technology [Tijuana]
dc.contributor.authorMARTINEZ, Yuliana
hal.structure.identifierSchool of Computer Science and Electronic Engineering
dc.contributor.authorGALVAN-LOPEZ, Edgar
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierAdvanced Learning Evolutionary Algorithms [ALEA]
dc.contributor.authorLEGRAND, Pierrick
dc.date.issued2012-07-07
dc.date.conference2012-07-07
dc.description.abstractEnOne of the main open problems within Genetic Programming (GP) is to meaningfully characterize the difficulty (or hardness) of a problem. The general goal is to develop predictive tools that can allow us to identify how difficult a problem is for a GP system to solve. In this work, we identify and compare two main approaches that address this question. We denote the first group of methods as Evolvability Indicators (EI), which are measures that attempt to capture how amendable the fitness landscape is to a GP search. The best examples of current EIs are the Fitness Distance Correlation (FDC) and the Negative Slope Coefficient (NSC). The second, more recent, group of methods are what we call Predictors of Expected Performance (PEP), which are predictive models that take as input a set of descriptive attributes of a particular problem and produce as output the expected performance of a GP system. The experimental work presented here compares an EI, the NSC, and a PEP model for a GP system applied to data classification. Results suggest that the EI fails at measuring problem difficulty expressed by the performance of the GP classifiers, an unexpected result. On the other hand, the PEP models show a very high correlation with the actual performance of the GP system. It appears that while an EI can correctly estimate the difficulty of a given search, as shown by previous research on this topic, it does not necessarily capture the difficulty of the underlying problem that GP is intended to solve. Conversely, while the PEP models treat the GP system as a computational black-box, they can still provide accurate performance predictions.
dc.language.isoen
dc.title.enA Comparative Study of an Evolvability Indicator and a Predictor of Expected Performance for Genetic Programming
dc.typeCommunication dans un congrès
dc.subject.halInformatique [cs]/Traitement du signal et de l'image
dc.subject.halSciences de l'ingénieur [physics]/Traitement du signal et de l'image
dc.subject.halInformatique [cs]/Intelligence artificielle [cs.AI]
bordeaux.conference.titleGECCO
bordeaux.countryUS
bordeaux.conference.cityPhiladelphie
bordeaux.peerReviewedoui
hal.identifierhal-00757266
hal.version1
hal.invitednon
hal.proceedingsoui
hal.conference.end2012-07-11
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00757266v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2012-07-07&rft.au=TRUJILLO,%20Leonardo&MARTINEZ,%20Yuliana&GALVAN-LOPEZ,%20Edgar&LEGRAND,%20Pierrick&rft.genre=unknown


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem