Show simple item record

hal.structure.identifierInstituto Tecnológico de Tijuana = Tijuana Institute of Technology [Tijuana]
dc.contributor.authorTRUJILLO, Leonardo
hal.structure.identifierInstituto Tecnológico de Tijuana = Tijuana Institute of Technology [Tijuana]
dc.contributor.authorMARTINEZ, Yuliana
hal.structure.identifierSchool of Computer Science and Electronic Engineering
dc.contributor.authorGALVAN-LOPEZ, Edgar
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierAdvanced Learning Evolutionary Algorithms [ALEA]
dc.contributor.authorLEGRAND, Pierrick
dc.date.issued2012-11-14
dc.date.conference2012-11-14
dc.description.abstractEnIn the field of Genetic Programming (GP) a question exists that is difficult to solve; how can problem difficulty be determined? In this paper the overall goal is to develop predictive tools that estimate how difficult a problem is for GP to solve. Here we analyse two groups of methods. We call the first group Evolvability Indicators (EI), measures that capture how amendable the fitness landscape is to a GP search. The second are Predictors of Expected Performance (PEP), models that take as input a set of descriptive attributes of a problem and predict the expected performance of a GP system. These predictive variables are domain specific thus problems are described in the context of the problem domain. This paper compares an EI, the Negative Slope Coefficient, and a PEP model for a GP classifier. Results suggest that the EI does not correlate with the performance of GP classifiers. Conversely, the PEP models show a high correlation with GP performance. It appears that while an EI estimates the difficulty of a search, it does not necessarily capture the difficulty of the underlying problem. However, while PEP models treat GP as a computational black-box, they can produce accurate performance predictions.
dc.language.isoen
dc.title.enA comparison of predictive measures of problem difficulty for classification with Genetic Programming
dc.typeCommunication dans un congrès
dc.subject.halInformatique [cs]/Traitement du signal et de l'image
dc.subject.halSciences de l'ingénieur [physics]/Traitement du signal et de l'image
dc.subject.halInformatique [cs]/Intelligence artificielle [cs.AI]
bordeaux.conference.titleERA 2012
bordeaux.countryMX
bordeaux.conference.cityTijuana
bordeaux.peerReviewedoui
hal.identifierhal-00757363
hal.version1
hal.invitednon
hal.proceedingsoui
hal.conference.end2012-11-16
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00757363v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2012-11-14&rft.au=TRUJILLO,%20Leonardo&MARTINEZ,%20Yuliana&GALVAN-LOPEZ,%20Edgar&LEGRAND,%20Pierrick&rft.genre=unknown


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record