Show simple item record

hal.structure.identifierInstitut de Recherche Mathématique de Rennes [IRMAR]
dc.contributor.authorDAUGE, Monique
hal.structure.identifierApplied and Computational Electromagnetics [Liège] [ACE]
dc.contributor.authorDULAR, Patrick
hal.structure.identifierAmpère, Département Méthodes pour l'Ingénierie des Systèmes [MIS]
dc.contributor.authorKRÄHENBÜHL, Laurent
hal.structure.identifierAdvanced 3D Numerical Modeling in Geophysics [Magique 3D]
hal.structure.identifierLaboratoire de Mathématiques et de leurs Applications [Pau] [LMAP]
dc.contributor.authorPÉRON, Victor
hal.structure.identifierGroupe de Recherche en Electromagnétisme [LAPLACE-GRE]
dc.contributor.authorPERRUSSEL, Ronan
hal.structure.identifierModélisation, contrôle et calcul [MC2]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorPOIGNARD, Clair
dc.date.issued2014
dc.identifier.issn0170-4214
dc.description.abstractEnIn this paper, we describe the scalar magnetic potential in the vicinity of a corner of a conducting body embedded in a dielectric medium in a bidimensional setting. We make explicit the corner asymptotic expansion for this potential as the distance to the corner goes to zero. This expansion involves singular functions and singular coefficients. We introduce a method for the calculation of the singular functions near the corner and we provide two methods to compute the singular coefficients: the method of moments and the method of quasi-dual singular functions. Estimates for the convergence of both approximate methods are proven. We eventually illustrate the theoretical results with finite element computations. The specific non-standard feature of this problem lies in the structure of its singular functions: They have the form of series whose first terms are harmonic polynomials and further terms are genuine non-smooth functions generated by the piecewise constant zeroth order term of the operator.
dc.description.sponsorshipCentre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation - ANR-11-LABX-0020
dc.language.isoen
dc.publisherWiley
dc.subject.eneddy-current model
dc.subject.encorner asymptotic
dc.subject.ensingular coefficients
dc.title.enCorner asymptotics of the magnetic potential in the eddy-current model
dc.typeArticle de revue
dc.identifier.doi10.1002/mma.2947
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
bordeaux.journalMathematical Methods in the Applied Sciences
bordeaux.page1924-1955
bordeaux.volume37
bordeaux.issue13
bordeaux.peerReviewedoui
hal.identifierhal-00779067
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00779067v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Mathematical%20Methods%20in%20the%20Applied%20Sciences&rft.date=2014&rft.volume=37&rft.issue=13&rft.spage=1924-1955&rft.epage=1924-1955&rft.eissn=0170-4214&rft.issn=0170-4214&rft.au=DAUGE,%20Monique&DULAR,%20Patrick&KR%C3%84HENB%C3%9CHL,%20Laurent&P%C3%89RON,%20Victor&PERRUSSEL,%20Ronan&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record