Afficher la notice abrégée

hal.structure.identifierLaboratoire de Mathématiques et de leurs Applications [Pau] [LMAP]
dc.contributor.authorCARBOU, Gilles
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorFABRIE, Pierre
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierModélisation, contrôle et calcul [MC2]
dc.contributor.authorSANTUGINI-REPIQUET, Kévin
dc.date.created2014-02-24
dc.date.issued2015
dc.identifier.issn1072-6691
dc.description.abstractEnWe study the Landau-Lifshitz system associated with Maxwell equations in a bilayered ferromagnetic body when super-exchange and surface anisotropy interactions are present in the spacer in-between the layers. In the presence of these surface energies, the Neumann boundary condition becomes nonlinear. We prove, in three dimensions, the existence of global weak solutions to the Landau-Lifshitz-Maxwell system with nonlinear Neumann boundary conditions.
dc.language.isoen
dc.publisherTexas State University, Department of Mathematics
dc.title.enWeak solutions to the Landau-Lifshitz-Maxwell system with nonlinear Neumann boundary conditions arising from surface energie
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
dc.identifier.arxiv1402.6471
bordeaux.journalElectronic Journal of Differential Equations
bordeaux.peerReviewedoui
hal.identifierhal-00951318
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00951318v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Electronic%20Journal%20of%20Differential%20Equations&rft.date=2015&rft.eissn=1072-6691&rft.issn=1072-6691&rft.au=CARBOU,%20Gilles&FABRIE,%20Pierre&SANTUGINI-REPIQUET,%20K%C3%A9vin&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée