Show simple item record

hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
hal.structure.identifierCentre National de la Recherche Scientifique [CNRS]
hal.structure.identifierUniversité de Bordeaux [UB]
dc.contributor.authorRASCOL, Estelle
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
hal.structure.identifierCentre National de la Recherche Scientifique [CNRS]
hal.structure.identifierUniversité de Bordeaux [UB]
dc.contributor.authorVILLETTE, Sandrine
hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
hal.structure.identifierCentre National de la Recherche Scientifique [CNRS]
hal.structure.identifierUniversité de Bordeaux [UB]
dc.contributor.authorHARTÉ, Etienne
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
hal.structure.identifierCentre National de la Recherche Scientifique [CNRS]
hal.structure.identifierUniversité de Bordeaux [UB]
dc.contributor.authorALVES, Isabel
dc.date.issued2021-11
dc.identifier.issn1420-3049
dc.description.abstractEnPlasmon waveguide resonance (PWR) is a variant of surface plasmon resonance (SPR) that was invented about two decades ago at the University of Arizona. In addition to the characterization of the kinetics and affinity of molecular interactions, PWR possesses several advantages relative to SPR, namely, the ability to monitor both mass and structural changes. PWR allows anisotropy information to be obtained and is ideal for the investigation of molecular interactions occurring in anisotropic-oriented thin films. In this review, we will revisit main PWR applications, aiming at characterizing molecular interactions occurring (1) at lipid membranes deposited in the sensor and (2) in chemically modified sensors. Among the most widely used applications is the investigation of G-protein coupled receptor (GPCR) ligand activation and the study of the lipid environment’s impact on this process. Pioneering PWR studies on GPCRs were carried out thanks to the strong and effective collaboration between two laboratories in the University of Arizona leaded by Dr. Gordon Tollin and Dr. Victor J. Hruby. This review provides an overview of the main applications of PWR and provides a historical perspective on the development of instruments since the first prototype and continuous technological improvements to ongoing and future developments, aiming at broadening the information obtained and expanding the application portfolio.
dc.language.isoen
dc.publisherMDPI
dc.title.enPlasmon Waveguide Resonance: Principles, Applications and Historical Perspectives on Instrument Development
dc.typeArticle de revue
dc.identifier.doi10.3390/molecules26216442
dc.subject.halSciences de l'ingénieur [physics]/Optique / photonique
dc.subject.halSciences du Vivant [q-bio]/Biochimie, Biologie Moléculaire/Biophysique
dc.subject.halSciences du Vivant [q-bio]/Biochimie, Biologie Moléculaire
bordeaux.journalMolecules
bordeaux.page6442
bordeaux.volume26
bordeaux.issue21
bordeaux.peerReviewedoui
hal.identifierhal-03578355
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03578355v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Molecules&rft.date=2021-11&rft.volume=26&rft.issue=21&rft.spage=6442&rft.epage=6442&rft.eissn=1420-3049&rft.issn=1420-3049&rft.au=RASCOL,%20Estelle&VILLETTE,%20Sandrine&HART%C3%89,%20Etienne&ALVES,%20Isabel&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record