Show simple item record

hal.structure.identifierCentre de physique moléculaire optique et hertzienne [CPMOH]
dc.contributor.authorVILLAIN-GUILLOT, Simon
dc.date.created2008-06-01
dc.date.issued2009
dc.identifier.issn0218-1274
dc.description.abstractEnWe use a family of stationary solutions of the Cahn-Hilliard dynamics with the aim of describing the process of coarsening during a first order phase transition. With this analytical ansatz, we can compute the characteristic time for one step of period doubling in Langer's self-similar scenario for Ostwald ripening. As an application, the same ansatz is also used to compute the thermodynamically stable period of a 1D modulated phase pattern, described by a modified Cahn-Hilliard dynamics with a long range interaction term.
dc.language.isoen
dc.publisherWorld Scientific Publishing
dc.subject.enPattern formation
dc.subject.enCahn-Hilliard dynamics
dc.subject.ennonlinear dynamics
dc.subject.ensymmetry breaking
dc.title.en1D Cahn-Hilliard equation: Ostwald ripening and modulated phase systems
dc.typeArticle de revue
dc.identifier.doi10.1142/s0218127409024980
dc.subject.halPhysique [physics]/Matière Condensée [cond-mat]/Autre [cond-mat.other]
dc.identifier.arxivcond-mat/0703782
bordeaux.journalInternational journal of bifurcation and chaos in applied sciences and engineering
bordeaux.page3541-3552
bordeaux.volume19
bordeaux.issue10
bordeaux.peerReviewedoui
hal.identifierhal-00670571
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00670571v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=International%20journal%20of%20bifurcation%20and%20chaos%20in%20applied%20sciences%20and%20engineering&rft.date=2009&rft.volume=19&rft.issue=10&rft.spage=3541-3552&rft.epage=3541-3552&rft.eissn=0218-1274&rft.issn=0218-1274&rft.au=VILLAIN-GUILLOT,%20Simon&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record