Afficher la notice abrégée

hal.structure.identifierMathématiques et Informatique Appliquées [MIA-Paris]
dc.contributor.authorLEGER, Jean-Benoist
hal.structure.identifierBiodiversité, Gènes & Communautés [BioGeCo]
dc.contributor.authorVACHER, Corinne
hal.structure.identifierMathématiques et Informatique Appliquées [MIA-Paris]
dc.contributor.authorDAUDIN, Jean-Jacques
dc.date.issued2014
dc.identifier.issn0960-3174
dc.description.abstractEnThe analysis of complex networks is a rapidly growing topic with many applications in different domains. The analysis of large graphs is often made via unsupervised classification of vertices of the graph. Community detection is the main way to divide a large graph into smaller ones that can be studied separately. However another definition of a cluster is possible, which is based on the structural distance between vertices. This definition includes the case of community clusters but is more general in the sense that two vertices may be in the same group even if they are not connected. Methods for detecting communities in undirected graphs have been recently reviewed by Fortunato. In this paper we expand Fortunato's work and make a review of methods and algorithms for detecting essentially structurally homogeneous subsets of vertices in binary or weighted and directed and undirected graphs.
dc.language.isoen
dc.publisherSpringer Verlag (Germany)
dc.subject.engraphs
dc.subject.enclusters
dc.subject.enrandom walk
dc.subject.enspectral
dc.subject.enclustering
dc.subject.enstochastic
dc.subject.enblock
dc.subject.enmodel
dc.subject.enbipartite graphs
dc.title.enDetection of structurally homogeneous subsets in graphs
dc.typeArticle de revue
dc.identifier.doi10.1007/s11222-013-9395-3
dc.subject.halSciences du Vivant [q-bio]/Sciences agricoles
bordeaux.journalStatistics and Computing
bordeaux.page18 p.
bordeaux.volumeonline first
bordeaux.issue5
bordeaux.peerReviewedoui
hal.identifierhal-01019247
hal.version1
hal.popularnon
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01019247v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Statistics%20and%20Computing&rft.date=2014&rft.volume=online%20first&rft.issue=5&rft.spage=18%20p.&rft.epage=18%20p.&rft.eissn=0960-3174&rft.issn=0960-3174&rft.au=LEGER,%20Jean-Benoist&VACHER,%20Corinne&DAUDIN,%20Jean-Jacques&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée