Detection of structurally homogeneous subsets in graphs
hal.structure.identifier | Mathématiques et Informatique Appliquées [MIA-Paris] | |
dc.contributor.author | LEGER, Jean-Benoist | |
hal.structure.identifier | Biodiversité, Gènes & Communautés [BioGeCo] | |
dc.contributor.author | VACHER, Corinne | |
hal.structure.identifier | Mathématiques et Informatique Appliquées [MIA-Paris] | |
dc.contributor.author | DAUDIN, Jean-Jacques | |
dc.date.issued | 2014 | |
dc.identifier.issn | 0960-3174 | |
dc.description.abstractEn | The analysis of complex networks is a rapidly growing topic with many applications in different domains. The analysis of large graphs is often made via unsupervised classification of vertices of the graph. Community detection is the main way to divide a large graph into smaller ones that can be studied separately. However another definition of a cluster is possible, which is based on the structural distance between vertices. This definition includes the case of community clusters but is more general in the sense that two vertices may be in the same group even if they are not connected. Methods for detecting communities in undirected graphs have been recently reviewed by Fortunato. In this paper we expand Fortunato's work and make a review of methods and algorithms for detecting essentially structurally homogeneous subsets of vertices in binary or weighted and directed and undirected graphs. | |
dc.language.iso | en | |
dc.publisher | Springer Verlag (Germany) | |
dc.subject.en | graphs | |
dc.subject.en | clusters | |
dc.subject.en | random walk | |
dc.subject.en | spectral | |
dc.subject.en | clustering | |
dc.subject.en | stochastic | |
dc.subject.en | block | |
dc.subject.en | model | |
dc.subject.en | bipartite graphs | |
dc.title.en | Detection of structurally homogeneous subsets in graphs | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1007/s11222-013-9395-3 | |
dc.subject.hal | Sciences du Vivant [q-bio]/Sciences agricoles | |
bordeaux.journal | Statistics and Computing | |
bordeaux.page | 18 p. | |
bordeaux.volume | online first | |
bordeaux.issue | 5 | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01019247 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Non spécifiée | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01019247v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Statistics%20and%20Computing&rft.date=2014&rft.volume=online%20first&rft.issue=5&rft.spage=18%20p.&rft.epage=18%20p.&rft.eissn=0960-3174&rft.issn=0960-3174&rft.au=LEGER,%20Jean-Benoist&VACHER,%20Corinne&DAUDIN,%20Jean-Jacques&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |