Complementarity of three distinctive phytoremediation crops for multiple-trace element contaminated soil
hal.structure.identifier | Institut de recherche en biologie végétale | |
dc.contributor.author | DESJARDINS, Dominic | |
hal.structure.identifier | Institut de recherche en biologie végétale | |
dc.contributor.author | BRERETON, Nicholas J. B. | |
hal.structure.identifier | Biodiversité, Gènes & Communautés [BioGeCo] | |
dc.contributor.author | MARCHAND, Lilian | |
hal.structure.identifier | Institut de recherche en biologie végétale | |
dc.contributor.author | BRISSON, Jacques | |
hal.structure.identifier | Institut de recherche en biologie végétale | |
hal.structure.identifier | Montreal Botanical Garden | |
dc.contributor.author | PITRE, Frédéric E | |
hal.structure.identifier | Institut de recherche en biologie végétale | |
hal.structure.identifier | Montreal Botanical Garden | |
dc.contributor.author | LABRECQUE, Michel | |
dc.date.accessioned | 2022-10-12T13:28:25Z | |
dc.date.available | 2022-10-12T13:28:25Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 0048-9697 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/158140 | |
dc.description.abstractEn | Trace element (TE) contaminated land represents an important risk to the environment and to human health worldwide. These soils usually contain a variety of TEs which can be a challenge for plant-based remediation options. As individual plant species often possess a limited range of TE remediation abilities, functional complementarity principles could be of value for remediation of soil contaminated by multiple TEs using assemblages of species. Monocultures and polycultures of Festuca arundinacea, Medicago sativa and Salix miyabeana were grown for 4months in aged-polluted soil contaminated by Ag, As, Cd, Cr, Cu, Pb, Se and Zn. Above and belowground biomass yields, root surface area (RSA) and TE tissue concentrations were recorded. In monoculture, the greatest aboveground biomass was produced by S. miyabeana (S), the greatest belowground biomass was from M. sativa (M) and F. arundinacea (F) produced the highest RSA. The polycultures of F+M, F+S and F+M+S produced among the highest values across all three traits. F. arundinacea monoculture and its combination with S. miyabeana (F+S) accumulated the highest amounts of total TEs in belowground tissues, whereas the most effective combination (or monoculture) for aboveground extraction yields varied depending on the TE considered. The crops demonstrated complementarity in their biomass allocation patterns as well as facilitative interactions. When considering contamination with a particular TE, the best phytomanagement approach could include a specific monoculture option; however, when above and belowground biomass allocation patterns, TE-remediation abilities as well as nitrogen accessibility are considered, co-cropping all three species (F+M+S) was the most robust scenario for remediation of multiple-TE contaminated land. By more effectively addressing a diversity of TE, species assemblage approaches could represent an important advancement towards enabling the use of plants to address contaminated-land issues worldwide. | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.subject | élément trace | |
dc.subject | sol contamine | |
dc.subject | azote | |
dc.subject | plante assainissante | |
dc.subject | festuca arundinacea | |
dc.subject | polyculture | |
dc.subject | medicago sativa | |
dc.subject | salix | |
dc.subject | monoculture | |
dc.subject.en | ecology | |
dc.subject.en | functional complementarity | |
dc.subject.en | phytoremediation | |
dc.subject.en | polycultures | |
dc.subject.en | soil remediation | |
dc.subject.en | trace elements | |
dc.subject.en | trace element | |
dc.subject.en | nitrogen | |
dc.subject.en | tall fescue | |
dc.subject.en | single crop farming | |
dc.title.en | Complementarity of three distinctive phytoremediation crops for multiple-trace element contaminated soil | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1016/j.scitotenv.2017.08.196 | |
dc.subject.hal | Sciences du Vivant [q-bio] | |
bordeaux.journal | Science of the Total Environment | |
bordeaux.page | 1428-1438 | |
bordeaux.volume | 610-611 | |
bordeaux.hal.laboratories | BioGeCo (Biodiversité Gènes & Communautés) - UMR 1202 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | INRAE | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01608696 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01608696v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Science%20of%20the%20Total%20Environment&rft.date=2018&rft.volume=610-611&rft.spage=1428-1438&rft.epage=1428-1438&rft.eissn=0048-9697&rft.issn=0048-9697&rft.au=DESJARDINS,%20Dominic&BRERETON,%20Nicholas%20J.%20B.&MARCHAND,%20Lilian&BRISSON,%20Jacques&PITRE,%20Fr%C3%A9d%C3%A9ric%20E&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |