Afficher la notice abrégée

hal.structure.identifierAgroécologie [Dijon]
dc.contributor.authorDEROCLES, Stéphane
hal.structure.identifierAgroécologie [Dijon]
dc.contributor.authorBOHAN, David
hal.structure.identifierSchool of Biological Sciences [Colchester]
dc.contributor.authorDUMBRELL, Alex J
hal.structure.identifierNewcastle University [Newcastle]
dc.contributor.authorKITSON, James J. N.
hal.structure.identifierÉvolution, Écologie et Paléontologie (Evo-Eco-Paleo) - UMR 8198 [Evo-Eco-Paléo (EEP)]
dc.contributor.authorMASSOL, Francois
hal.structure.identifierBiodiversité, Gènes & Communautés [BioGeCo]
dc.contributor.authorPAUVERT, Charlie
hal.structure.identifierInstitut de Recherche pour le Développement [IRD [Nouvelle-Calédonie]]
hal.structure.identifierInstitut de Génétique, Environnement et Protection des Plantes [IGEPP]
dc.contributor.authorPLANTEGENEST, Manuel
hal.structure.identifierBiodiversité, Gènes & Communautés [BioGeCo]
dc.contributor.authorVACHER, Corinne
dc.contributor.authorEVANS, Darren
dc.date.issued2018
dc.identifier.issn0065-2504
dc.description.abstractEnEcological network analysis (ENA) provides a mechanistic framework for describing complex species interactions, quantifying ecosystem services, and examining the impacts of environmental change on ecosystems. In this chapter, we highlight the importance and potential of ENA in future biomonitoring programs, as current biomonitoring indicators (e.g. species richness, population abundances of targeted species) are mostly descriptive and unable to characterize the mechanisms that underpin ecosystem functioning. Measuring the robustness of multilayer networks in the long term is one way of integrating ecological metrics more generally into biomonitoring schemes to better measure biodiversity and ecosystem functioning. Ecological networks are nevertheless difficult and labour-intensive to construct using conventional approaches, especially when building multilayer networks in poorly studied ecosystems (i.e. many tropical regions). Next-generation sequencing (NGS) provides unprecedented opportunities to rapidly build highly resolved species interaction networks across multiple trophic levels, but are yet to be fully exploited. We highlight the impediments to ecologists wishing to build DNA-based ecological networks and discuss some possible solutions. Machine learning and better data sharing between ecologists represent very important areas for advances in NGS-based networks. The future of network ecology is very exciting as all the tools necessary to build highly resolved multilayer networks are now within ecologists reach.
dc.language.isoen
dc.publisherElsevier
dc.subject.enEcological network
dc.subject.enfood web
dc.subject.ennext-generation sequencing
dc.subject.enmolecular approach
dc.subject.enmetabarcoding
dc.subject.enmachine learning
dc.subject.enecosystem services
dc.subject.enenvironmental changes
dc.subject.enrobustness
dc.subject.enbiomonitoring
dc.title.enBiomonitoring for the 21st Century: Integrating Next-Generation Sequencing Into Ecological Network Analysis
dc.typeArticle de revue
dc.identifier.doi10.1016/bs.aecr.2017.12.001
dc.subject.halSciences du Vivant [q-bio]/Génétique/Génétique des populations [q-bio.PE]
bordeaux.journalAdvances in Ecological Research
bordeaux.page1-62
bordeaux.volume58
bordeaux.peerReviewedoui
hal.identifierhal-01713119
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01713119v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Advances%20in%20Ecological%20Research&rft.date=2018&rft.volume=58&rft.spage=1-62&rft.epage=1-62&rft.eissn=0065-2504&rft.issn=0065-2504&rft.au=DEROCLES,%20St%C3%A9phane&BOHAN,%20David&DUMBRELL,%20Alex%20J&KITSON,%20James%20J.%20N.&MASSOL,%20Francois&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée