Afficher la notice abrégée

hal.structure.identifierUnité de Biométrie et Intelligence Artificielle (ancêtre de MIAT) [UBIA]
dc.contributor.authorPEYRARD, Nathalie
hal.structure.identifierEvolution and ecology program
dc.contributor.authorDIECKMANN, Ulf
hal.structure.identifierBiodiversité, Gènes & Communautés [BioGeCo]
dc.contributor.authorFRANC, Alain
dc.date.issued2008
dc.identifier.issn0040-5809
dc.description.abstractEnModels of infectious diseases are characterized by a phase transition between extinction and persistence. A challenge in contemporary epidemiology is to understand how the geometry of a host’s interaction network influences disease dynamics close to the critical point of such a transition. Here we address this challenge with the help of moment closures. Traditional moment closures, however, do not provide satisfactory predictions close to such critical points. We therefore introduce a new method for incorporating longer-range correlations into existing closures. Our method is technically simple, remains computationally tractable and significantly improves the approximation’s performance. Our extended closures thus provide an innovative tool for quantifying the influence of interaction networks on spatially or socially structured disease dynamics. In particular, we examine the effects of a network’s clustering coefficient, as well as of new geometrical measures, such as a network’s square clustering coefficients. We compare the relative performance of different closures from the literature, with or without our long-range extension. In this way, we demonstrate that the normalized version of the Bethe approximation–extended to incorporate long-range correlations according to our method–is an especially good candidate for studying influences of network structure. Our numerical results highlight the importance of the clustering coefficient and the square clustering coefficient for predicting disease dynamics at low and intermediate values of transmission rate, and demonstrate the significance of path redundancy for disease persistence.
dc.language.isoen
dc.publisherElsevier
dc.subjectPHASE TRANSITION
dc.subjectSTRUCTURE RÉTICULAIRE
dc.subjectPHASE DE TRANSITION
dc.subjectMODÈLE DE PROPAGATION
dc.subject.enCONTACT PROCESS
dc.subject.enINTERACTION-NETWORK STRUCTURE
dc.subject.enLONG-RANGE CORRELATION
dc.subject.enMOMENT CLOSURE
dc.title.enLong-range correlations improve understanding of the influence of network structure on contact dynamics
dc.typeArticle de revue
dc.identifier.doi10.1016/j.tpb.2007.12.006
dc.subject.halSciences du Vivant [q-bio]/Ecologie, Environnement
bordeaux.journalTheoretical Population Biology
bordeaux.page383-394
bordeaux.volume73
bordeaux.issue3
bordeaux.peerReviewedoui
hal.identifierhal-02659296
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02659296v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Theoretical%20Population%20Biology&rft.date=2008&rft.volume=73&rft.issue=3&rft.spage=383-394&rft.epage=383-394&rft.eissn=0040-5809&rft.issn=0040-5809&rft.au=PEYRARD,%20Nathalie&DIECKMANN,%20Ulf&FRANC,%20Alain&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée